Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicolaas I. Bohnen is active.

Publication


Featured researches published by Nicolaas I. Bohnen.


Behavioural Brain Research | 2011

The Cholinergic System and Parkinson Disease

Nicolaas I. Bohnen; Roger L. Albin

Although Parkinson disease (PD) is viewed traditionally as a motor syndrome secondary to nigrostriatal dopaminergic denervation, recent studies emphasize non-motor features. Non-motor comorbidities, such as cognitive impairment, are likely the result of an intricate interplay of multi-system degenerations and neurotransmitter deficiencies extending beyond the loss of dopaminergic nigral neurons. The pathological hallmark of parkinsonian dementia is the presence of extra-nigral Lewy bodies that can be accompanied by other pathologies, such as senile plaques. Lewy first identified the eponymous Lewy body in neurons of the nucleus basalis of Meynert (nbM), the source of cholinergic innervation of the cerebral cortex. Although cholinergic denervation is recognized as a pathological hallmark of Alzheimer disease (AD), in vivo neuroimaging studies reveal loss of cerebral cholinergic markers in parkinsonian dementia similar to or more severe than in prototypical AD. Imaging studies agree with post-mortem evidence suggesting that basal forebrain cholinergic system degeneration appears early in PD and worsens coincident with the appearance of dementia. Early cholinergic denervation in PD without dementia appears to be heterogeneous and may make specific contributions to the PD clinical phenotype. Apart from well-known cognitive and behavioral deficits, central, in particular limbic, cholinergic denervation may be associated with progressive deficits of odor identification in PD. Recent evidence indicates also that subcortical cholinergic denervation, probably due to degeneration of brainstem pedunculopontine nucleus neurons, may relate to the presence of dopamine non-responsive gait and balance impairments, including falls, in PD.


Alzheimers & Dementia | 2013

Appropriate use criteria for amyloid PET: A report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer's Association

Keith Johnson; Satoshi Minoshima; Nicolaas I. Bohnen; Kevin J. Donohoe; Norman L. Foster; Peter Herscovitch; Jason Karlawish; Christopher C. Rowe; Maria C. Carrillo; Dean M. Hartley; Saima Hedrick; Virginia Pappas; William Thies

Positron emission tomography (PET) of brain amyloid β is a technology that is becoming more available, but its clinical utility in medical practice requires careful definition. To provide guidance to dementia care practitioners, patients, and caregivers, the Alzheimers Association and the Society of Nuclear Medicine and Molecular Imaging convened the Amyloid Imaging Taskforce (AIT). The AIT considered a broad range of specific clinical scenarios in which amyloid PET could potentially be used appropriately. Peer‐reviewed, published literature was searched to ascertain available evidence relevant to these scenarios, and the AIT developed a consensus of expert opinion. Although empirical evidence of impact on clinical outcomes is not yet available, a set of specific appropriate use criteria (AUC) were agreed on that define the types of patients and clinical circumstances in which amyloid PET could be used. Both appropriate and inappropriate uses were considered and formulated, and are reported and discussed here. Because both dementia care and amyloid PET technology are in active development, these AUC will require periodic reassessment. Future research directions are also outlined, including diagnostic utility and patient‐centered outcomes.


Neurology | 2009

History of falls in Parkinson disease is associated with reduced cholinergic activity

Nicolaas I. Bohnen; Martijn Muller; Robert A. Koeppe; Stephanie A. Studenski; M. A. Kilbourn; Kirk A. Frey; Roger L. Albin

Objective: To investigate the relationships between history of falls and cholinergic vs dopaminergic denervation in patients with Parkinson disease (PD). Background: There is a need to explore nondopaminergic mechanisms of gait control as the majority of motor impairments associated with falls in PD are resistant to dopaminergic treatment. Alterations in cholinergic neurotransmission in PD may be implicated because of evidence that gait control depends on cholinergic system–mediated higher-level cortical and subcortical processing, including pedunculopontine nucleus (PPN) function. Methods: In this cross-sectional study, 44 patients with PD (Hoehn & Yahr stages I–III) without dementia and 15 control subjects underwent a clinical assessment and [11C]methyl-4-piperidinyl propionate (PMP) acetylcholinesterase (AChE) and [11C]dihydrotetrabenazine (DTBZ) vesicular monoamine transporter type 2 (VMAT2) brain PET imaging. Results: Seventeen patients (38.6%) reported a history of falls and 27 patients had no falls. Analysis of covariance of the cortical AChE hydrolysis rates demonstrated reduced cortical AChE in the PD fallers group (−12.3%) followed by the PD nonfallers (−6.6%) compared to control subjects (F = 7.22, p = 0.0004). Thalamic AChE activity was lower only in the PD fallers group (−11.8%; F = 4.36, p = 0.008). There was no significant difference in nigrostriatal dopaminergic activity between PD fallers and nonfallers. Conclusions: Unlike nigrostriatal dopaminergic denervation, cholinergic hypofunction is associated with fall status in Parkinson disease (PD). Thalamic AChE activity in part represents cholinergic output of the pedunculopontine nucleus (PPN), a key node for gait control. Our results are consistent with other data indicating that PPN degeneration is a major factor leading to impaired postural control and gait dysfunction in PD.


Journal of Neurology | 2006

Cognitive correlates of cortical cholinergic denervation in Parkinson's disease and parkinsonian dementia.

Nicolaas I. Bohnen; Daniel I. Kaufer; Rick Hendrickson; Larry S. Ivanco; Brian J. Lopresti; Gregory M. Constantine; Chester A. Mathis; James G. Davis; Robert Y. Moore; Steven T. DeKosky

AbstractWe recently reported findings that loss of cortical acetylcholinesterase (AChE) activity is greater in parkinsonian dementia than in Alzheimer’s disease (AD). In this study we determined cognitive correlates of in vivo cortical AChE activity in patients with parkinsonian dementia (PDem, n = 11), Parkinson’s disease without dementia (PD, n = 13), and in normal controls (NC, n = 14) using N–[11C]methyl–piperidin–4–yl propionate ([11C]PMP) AChE positron emission tomography (PET). Cortical AChE activity was significantly reduced in the PDem (–20.9%) and PD (–12.7 %) subjects (P < 0.001) when compared with the control subjects. Analysis of the cognitive data within the patient groups demonstrated that scores on the WAIS-III Digit Span, a test of working memory and attention, had most robust correlation with cortical AChE activity (R = 0.61, p < 0.005). There were also significant correlations between cortical AChE activity and other tests of attentional and executive functions, such as the Trail Making and Stroop Color Word tests. There was no significant correlation between cortical AChE activity and duration of motor disease (R = –0.01, ns) or severity of parkinsonian motor symptoms (R = 0.14, ns). We conclude that cortical cholinergic denervation in PD and parkinsonian dementia is associated with decreased performance on tests of attentional and executive functioning.


Journal of Cerebral Blood Flow and Metabolism | 2006

Positron emission tomography of monoaminergic vesicular binding in aging and Parkinson disease

Nicolaas I. Bohnen; Roger L. Albin; Robert A. Koeppe; K. Wernette; Michael R. Kilbourn; Satoshi Minoshima; Kirk A. Frey

The type-2 vesicular monoamine transporter (VMAT2) might serve as an objective biomarker of Parkinson disease (PD) severity. Thirty-one subjects with early-stage PD and 75 normal subjects underwent continuous intravenous infusion of (+)-[11C]dihydrotetrabenazine (DTBZ) and positron emission tomography (PET) imaging to estimate the striatal VMAT2 binding site density with equilibrium tracer modeling. Parkinson disease patients were evaluated clinically in the practically defined ‘off’ state with the Unified Parkinson Disease Rating Scale (UPDRS), the Hoehn and Yahr Scale (HY), and the Schwab and England Activities of Daily Living Scale (SE). In normal subjects there was age-related decline in striatal DTBZ binding, approximating 0.5% per year. In PD subjects, specific DTBZ binding was reduced in the caudate nucleus (CD; −44%), anterior putamen (−68%), and posterior putamen (PP; −77%). The PP-to-CD ratio of binding was reduced significantly in PD subjects. Dihydrotetrabenazine binding was also reduced by approximately 50% in the PD substantia nigra. Striatal binding reductions correlated significantly with PD duration and SE scores, but not with HY stage or with UPDRS motor subscale (UPDRSIII) scores. Striatal and midbrain DTBZ binding was asymmetric in PD subjects, with greatest reductions contralateral to the most clinically affected limbs. There was significant correlation between asymmetry of DTBZ binding and clinical asymmetry measured with the UPDRSIII. In HY stage 1 and 1.5 subjects (n = 16), PP DTBZ binding contralateral to the clinically unaffected body side was reduced by 73%, indicating substantial preclinical nigrostriatal pathology in PD. We conclude that (+)-[11C]DTBZ-PET imaging displays many properties necessary of a PD biomarker.


Brain | 2010

Olfactory dysfunction, central cholinergic integrity and cognitive impairment in Parkinson’s disease

Nicolaas I. Bohnen; Martijn Muller; Vikas Kotagal; Robert A. Koeppe; Michael Kilbourn; Roger L. Albin; Kirk A. Frey

Olfactory dysfunction is common in subjects with Parkinson’s disease. The pathophysiology of such dysfunction, however, remains poorly understood. Neurodegeneration within central regions involved in odour perception may contribute to olfactory dysfunction in Parkinson’s disease. Central cholinergic deficits occur in Parkinson’s disease and cholinergic neurons innervate regions, such as the limbic archicortex, involved in odour perception. We investigated the relationship between performance on an odour identification task and forebrain cholinergic denervation in Parkinson’s disease subjects without dementia. Fifty-eight patients with Parkinson’s disease (mean Hoehn and Yahr stage 2.5 ± 0.5) without dementia (mean Mini-Mental State Examination, 29.0 ± 1.4) underwent a clinical assessment, [11C]methyl-4-piperidinyl propionate acetylcholinesterase brain positron emission tomography and olfactory testing with the University of Pennsylvania Smell Identification Test. The diagnosis of Parkinson’s disease was confirmed by [11C]dihydrotetrabenazine vesicular monoamine transporter type 2 positron emission tomography. We found that odour identification test scores correlated positively with acetylcholinesterase activity in the hippocampal formation (r = 0.56, P < 0.0001), amygdala (r = 0.50, P < 0.0001) and neocortex (r = 0.46, P = 0.0003). Striatal monoaminergic activity correlated positively with odour identification scores (r = 0.30, P < 0.05). Multiple regression analysis including limbic (hippocampal and amygdala) and neocortical acetylcholinesterase activity as well as striatal monoaminergic activity, using odour identification scores as the dependent variable, demonstrated a significant regressor effect for limbic acetylcholinesterase activity (F = 10.1, P < 0.0001), borderline for striatal monoaminergic activity (F = 1.6, P = 0.13), but not significant for cortical acetylcholinesterase activity (F = 0.3, P = 0.75). Odour identification scores correlated positively with scores on cognitive measures of episodic verbal learning (r = 0.30, P < 0.05). These findings indicate that cholinergic denervation of the limbic archicortex is a more robust determinant of hyposmia than nigrostriatal dopaminergic denervation in subjects with moderately severe Parkinsons disease. Greater deficits in odour identification may identify patients with Parkinsons disease at risk for clinically significant cognitive impairment.


The Journal of Nuclear Medicine | 2012

Effectiveness and Safety of 18F-FDG PET in the Evaluation of Dementia: A Review of the Recent Literature

Nicolaas I. Bohnen; David S.W. Djang; Karl Herholz; Yoshimi Anzai; Satoshi Minoshima

Imaging that can detect pathophysiologic change in the brain holds great promise for diagnostic assessment of patients with Alzheimer disease (AD) and dementia. Although a previous metaanalysis centering on literature from 1990 to 2000 showed a summary accuracy of 86% for 18F-FDG PET for AD diagnosis, the clinical value was considered uncertain because of methodologic shortcomings. Review of the recent literature since 2000 demonstrates that the evidence for 18F-FDG PET in assessment of dementia has increased with new studies that include autopsy confirmation, wide-diagnostic-spectrum recruitment in primary care settings, historical and prospective cohort studies, and multicenter data analyses. These data support the role of 18F-FDG PET as an effective and useful adjunct to other diagnostic information in the assessment of patients with symptoms of dementia. Findings are in line with recently revised diagnostic criteria of AD that for the first time recognize the unique role of biomarker evidence in disease definition.


Neurology | 2003

Increased ventral striatal monoaminergic innervation in Tourette syndrome

Roger L. Albin; Robert A. Koeppe; Nicolaas I. Bohnen; Thomas E. Nichols; P. Meyer; K. Wernette; Satoshi Minoshima; Michael R. Kilbourn; Kirk A. Frey

Background: Excessive striatal dopaminergic innervation is suggested to underlie Tourette syndrome (TS). Prior imaging and postmortem studies yield conflicting data. Methods: The authors used PET with the type 2 vesicular monoamine transporter ligand [11C]dihydrotetrabenazine (DTBZ) to quantify striatal monoaminergic innervation in patients with TS (n = 19) and control subjects (n = 27). Compartmental modeling was used to determine blood to brain ligand transport (K1) and tissue to plasma distribution volume (a measure of ligand binding) during continuous infusion of DTBZ. TS data were compared with control data using predefined regions of interest and on a voxel by voxel basis. Results: There were no significant differences in ligand binding or ligand transport between patients with TS and control subjects in the dorsal striatum. With voxel by voxel analysis, there was increased DTBZ binding in the right ventral striatum. Conclusions: Previously reported differences between patients with TS and control subjects in dorsal striatal dopamine terminal markers may reflect medication-induced regulation of terminal marker expression or be the result of intrinsic differences in striatal dopaminergic synaptic function. Increased right ventral striatal DTBZ binding suggests that abnormal ventral striatal dopaminergic innervation may underlie tics.


The Journal of Nuclear Medicine | 2013

Appropriate use criteria for amyloid PET: A report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association

Keith Johnson; Satoshi Minoshima; Nicolaas I. Bohnen; Kevin J. Donohoe; Norman L. Foster; Peter Herscovitch; Jason Karlawish; Christopher C. Rowe; Maria C. Carrillo; Dean M. Hartley; Saima Hedrick; Virginia Pappas; William Thies

Positron emission tomography (PET) of brain amyloid β is a technology that is becoming more available, but its clinical utility in medical practice requires careful definition. To provide guidance to dementia care practitioners, patients, and caregivers, the Alzheimer’s Association and the Society of Nuclear Medicine and Molecular Imaging convened the Amyloid Imaging Taskforce (AIT). The AIT considered a broad range of specific clinical scenarios in which amyloid PET could potentially be used appropriately. Peer-reviewed, published literature was searched to ascertain available evidence relevant to these scenarios, and the AIT developed a consensus of expert opinion. Although empirical evidence of impact on clinical outcomes is not yet available, a set of specific appropriate use criteria (AUC) were agreed on that define the types of patients and clinical circumstances in which amyloid PET could be used. Both appropriate and inappropriate uses were considered and formulated, and are reported and discussed here. Because both dementia care and amyloid PET technology are in active development, these AUC will require periodic reassessment. Future research directions are also outlined, including diagnostic utility and patient-centered outcomes.


Journal of Neurology, Neurosurgery, and Psychiatry | 2005

Degree of inhibition of cortical acetylcholinesterase activity and cognitive effects by donepezil treatment in Alzheimer’s disease

Nicolaas I. Bohnen; Daniel I. Kaufer; Rick Hendrickson; Larry S. Ivanco; Brian J. Lopresti; Robert A. Koeppe; Carolyn C. Meltzer; Gregory M. Constantine; James G. Davis; Chester A. Mathis; Steven T. DeKosky; Robert Y. Moore

Objectives: To determine in vivo cortical acetylcholinesterase (AChE) activity and cognitive effects in subjects with mild Alzheimer’s disease (AD, n = 14) prior to and after 12 weeks of donepezil therapy. Methods: Cognitive and N-[11C]methyl-piperidin-4-yl propionate ([11C]PMP) AChE positron emission tomography (PET) assessments before and after donepezil therapy. Results: Analysis of the PET data revealed mean (temporal, parietal, and frontal) cortical donepezil induced AChE inhibition of 19.1% (SD 9.4%) (t = −7.9; p<0.0001). Enzyme inhibition was most robust in the anterior cingulate cortex (24.2% (6.9%), t = −14.1; p<0.0001). Donepezil induced cortical inhibition of AChE activity correlated with changes in the Stroop Color Word interference scores (R2 = 0.59, p<0.01), but not with primary memory test scores. Analysis of the Stroop test data indicated that subjects with AChE inhibition greater than the median value (>22.2%) had improved scores on the Stroop Color Word Test compared with subjects with less inhibition who had stable to worsening scores (t = −2.7; p<0.05). Conclusions: Donepezil induced inhibition of cortical AChE enzyme activity is modest in patients with mild AD. The degree of cortical enzyme inhibition correlates with changes in executive and attentional functions.

Collaboration


Dive into the Nicolaas I. Bohnen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Scott

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge