Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Myth T.S. Mok is active.

Publication


Featured researches published by Myth T.S. Mok.


Journal of Biological Chemistry | 2008

Mitochondrial Targeting of Adenomatous Polyposis Coli Protein Is Stimulated by Truncating Cancer Mutations REGULATION OF Bcl-2 AND IMPLICATIONS FOR CELL SURVIVAL

Mariana G. Brocardo; Ying Lei; Anthony Tighe; Stephen S. Taylor; Myth T.S. Mok; Beric R. Henderson

The adenomatous polyposis coli (APC) protein tumor suppressor is mutated in the majority of colon cancers. Most APC gene mutations cause deletion of the C terminus and disrupt APC regulation of β-catenin turnover, microtubule dynamics, and chromosome segregation. Truncated APC mutant peptides may also gain unique properties, not exhibited by wild-type APC, which contribute to tumor cell survival and proliferation. Here we report a differential subcellular localization pattern for wild-type and mutant APC. A pool of APC truncation mutants was detected at mitochondria by cellular fractionation and confocal microscopy. In contrast, wild-type APC located poorly at mitochondria. Similar results were observed for endogenous and stably induced forms of APC, with the shortest N-terminal mutant peptides (N750, N853, N1309, N1337) displaying the strongest mitochondrial staining. The knock down of mutant APC(N1337) in SW480 tumor cells caused an increase in apoptosis and mitochondrial membrane permeability, and this correlated with reduced Bcl-2 protein levels in mitochondrial fractions. Interestingly, the silencing of APC did not alter expression of β-catenin or the apoptotic regulatory factors Bax, Bcl-xL, or survivin. APC formed a complex with Bcl-2 in mitochondrial fractions, and this may contribute to the APC-dependent regulation of Bcl-2. We propose that a subset of cancer mutations induce APC mitochondrial localization and that APC regulation of Bcl-2 at mitochondria may contribute to tumor cell survival.


Cellular Signalling | 2009

Regulation of β-catenin trafficking to the membrane in living cells

Michael Johnson; Manisha Sharma; Cara Jamieson; Jasmine M. Henderson; Myth T.S. Mok; Linda J. Bendall; Beric R. Henderson

Beta-catenin is a key mediator of the Wnt signaling process and accumulates in the nucleus and at the membrane in response to Wnt-mediated inhibition of GSK-3beta. In this study we used live cell photobleaching experiments to determine the dynamics and rate of recruitment of beta-catenin at membrane adherens junctions (cell adhesion) and membrane ruffles (cell migration). First, we confirmed the nuclear-cytoplasmic shuttling of GFP-tagged beta-catenin, and found that a small mobile pool of beta-catenin can move from the nucleus to membrane ruffles in NIH 3T3 fibroblasts with a t(0.5) of approximately 30 s. Thus, beta-catenin can shuttle between the nucleus and plasma membrane. The localized recruitment of beta-catenin-GFP to membrane ruffles was more rapid, and the strong recovery observed after bleaching (mobile fraction 53%, t(0.5) approximately 5 s) is indicative of high turnover and transient association. In contrast, beta-catenin-GFP displayed poor recovery at adherens junctions in MDCK epithelial cells (mobile fraction 10%, t(0.5) approximately 8 s), indicating stable retention at these membrane structures. We previously identified IQGAP1 as an upstream regulator of beta-catenin at the membrane, and this is supported by photobleaching assays which now reveal IQGAP1 to be more stably anchored at membrane ruffles than beta-catenin. Further analysis showed that LiCl-mediated inactivation of the kinase GSK-3beta increased beta-catenin membrane ruffle staining; this correlated with a faster rate of recruitment and not increased membrane retention of beta-catenin. In summary, beta-catenin displays a high turnover rate at membrane ruffles consistent with its dynamic internalization and recycling at these sites by macropinocytosis.


Cellular Signalling | 2010

A comparison of BRCA1 nuclear localization with 14 DNA damage response proteins and domains: identification of specific differences between BRCA1 and 53BP1 at DNA damage-induced foci.

Myth T.S. Mok; Beric R. Henderson

BRCA1 is an important mediator of the DNA damage response pathway. Previous studies have identified a number of proteins that associate with BRCA1 at nuclear foci after ionizing radiation (IR)-induced DNA damage. However, the co-localization patterns of BRCA1 and various DNA damage response proteins have not yet been systematically quantified and compared within the same experimental system. In this study, a new inducible human cell line was established to allow unambiguous detection of YFP-BRCA1 at nuclear foci. Quantitative 2-D microscopic analysis was performed to compare the intranuclear co-localization of YFP-BRCA1 with 10 cellular proteins and 4 cellular domains before and after IR. Intriguingly, YFP-BRCA1 displayed significantly better focal co-localization with BARD1, RAP80 and Abraxas than with the upstream foci-initiating proteins gamma H2AX and MDC1. In contrast to previous reports, we found that the co-localization between YFP-BRCA1 and 53BP1 foci was surprisingly weak. Quantitative analyses of 3-D confocal images showed that approximately 60% of 53BP1 foci were unrelated to YFP-BRCA1 foci, approximately 35% of foci were abutting and only approximately 5% of foci co-localized. The YFP-BRCA1 and 53BP1 nuclear foci were distinctively separated within the first 3h after IR. In addition, in situ nuclear retention analysis revealed YFP-BRCA1 and BARD1 are less mobile than 53BP1 at IR-induced nuclear foci. Our findings indicate that BRCA1-BARD1 and 53BP1 are proximal but not overlapping at DNA break sites and are consistent with recent evidence for distinct roles of these proteins in the DNA damage response pathway.


Biochimica et Biophysica Acta | 2013

Stimulation of in vivo nuclear transport dynamics of actin and its co-factors IQGAP1 and Rac1 in response to DNA replication stress

Michael A. Johnson; Manisha Sharma; Myth T.S. Mok; Beric R. Henderson

Actin, a constituent of the cytoskeleton, is now recognized to function in the nucleus in gene transcription, chromatin remodeling and DNA replication/repair. Actin shuttles in and out of the nucleus through the action of transport receptors importin-9 and exportin-6. Here we have addressed the impact of cell cycle progression and DNA replication stress on actin nuclear localization, through study of actin dynamics in living cells. First, we showed that thymidine-induced G1/S phase cell cycle arrest increased the nuclear levels of actin and of two factors that stimulate actin polymerization: IQGAP1 and Rac1 GTPase. When cells were exposed to hydroxyurea to induce DNA replication stress, the nuclear localization of actin and its regulators was further enhanced. We employed live cell photobleaching assays and discovered that in response to DNA replication stress, GFP-actin nuclear import and export rates increased by up to 250%. The rate of import was twice as fast as export, accounting for actin nuclear accumulation. The faster shuttling dynamics correlated with reduced cellular retention of actin, and our data implicate actin polymerization in the stress-dependent uptake of nuclear actin. Furthermore, DNA replication stress induced a nuclear shift in IQGAP1 and Rac1 with enhanced import dynamics. Proximity ligation assays revealed that IQGAP1 associates in the nucleus with actin and Rac1, and formation of these complexes increased after hydroxyurea treatment. We propose that the replication stress checkpoint triggers co-ordinated nuclear entry and trafficking of actin, and of factors that regulate actin polymerization.


Cellular Signalling | 2012

Characterization of BARD1 targeting and dynamics at the centrosome: The role of CRM1, BRCA1 and the Q564H mutation

Kirsty M. Brodie; Myth T.S. Mok; Beric R. Henderson

BARD1 heterodimerizes with BRCA1, forming an E3 ubiquitin ligase that functions at nuclear foci to repair DNA damage and the centrosome to regulate mitosis. We compared BARD1 recruitment at these structures using fluorescence recovery after photobleaching assays to measure YFP-BARD1 dynamics in live cells. In nuclei at ionizing radiation-induced foci, 20% of the BARD1 pool was immobile and 80% of slow mobility exhibiting a recovery time >500 s. In contrast, at centrosomes 83% of BARD1 was rapidly mobile with extremely fast turnover (recovery time ~20s). The ~25-fold faster exchange of BARD1 at centrosomes correlated with BRCA1-independent recruitment. We mapped key targeting sequences to a combination of the N and C-termini, and showed that mutation of the nuclear export signal reduced centrosome localization by 50%, revealing a role for CRM1. Deletion of the sequence 128-550 increased BARD1 turnover at the centrosome, consistent with a role in transient associations. Conversely, the cancer mutation Q564H reduced turnover by 25%. BARD1 is one of the most highly mobile proteins yet detected at the centrosome, and in contrast to its localization at DNA repair foci, which requires dimerization with BRCA1, targeting of BARD1 to the centrosome occurs prior to heterodimerization and its rapid turnover may provide a mechanism to regulate dimer formation.


Traffic | 2012

The In Vivo Dynamic Organization of BRCA1-A Complex Proteins at DNA Damage-Induced Nuclear Foci

Myth T.S. Mok; Beric R. Henderson

The breast cancer associated gene 1 (BRCA1)‐A protein complex assembles at DNA damage‐induced nuclear foci to facilitate repair of double‐stranded breaks. Here, we describe the first systematic comparison of the dynamics, copy number and organization of its core components at foci. We show that the protein pools at individual foci generally comprise a small immobile fraction (∼20%) and larger mobile fraction (∼80%), which together occupy the same focal space but exist at different densities. In the mobile fraction, Abraxas (CCDC98) and the heterodimer BARD1–BRCA1 share similar rates of dynamic exchange (complete turnover in ∼500 seconds). In contrast, RAP80, which is required for initial foci assembly, was more dynamic with 25‐fold faster turnover at mature foci. In addition, Abraxas, BARD1, BRCA1 and Merit40 (NBA1) were stably retained in the immobile fraction of foci under conditions causing loss of BRCC36 and RAP80, suggesting a shift to RAP80‐independent localization after foci formation. These results, combined with our finding that RAP80 (∼1200 copies per focus) is twofold more abundant than Abraxas/BARD1/BRCA1 at foci, suggest new models defining the dynamic organization of BRCA1‐A complex at mature foci, wherein the unusually fast turnover of RAP80 may contribute to its regulation of BRCA1‐dependent DNA repair.


Cancers | 2016

Epigenetic Activation of Wnt/β-Catenin Signaling in NAFLD-Associated Hepatocarcinogenesis.

Yuan Tian; Myth T.S. Mok; Pengyuan Yang; Alfred S.L. Cheng

Non-alcoholic fatty liver disease (NAFLD), characterized by fat accumulation in liver, is closely associated with central obesity, over-nutrition and other features of metabolic syndrome, which elevate the risk of developing hepatocellular carcinoma (HCC). The Wnt/β-catenin signaling pathway plays a significant role in the physiology and pathology of liver. Up to half of HCC patients have activation of Wnt/β-catenin signaling. However, the mutation frequencies of CTNNB1 (encoding β-catenin protein) or other antagonists targeting Wnt/β-catenin signaling are low in HCC patients, suggesting that genetic mutations are not the major factor driving abnormal β-catenin activities in HCC. Emerging evidence has demonstrated that obesity-induced metabolic pathways can deregulate chromatin modifiers such as histone deacetylase 8 to trigger undesired global epigenetic changes, thereby modifying gene expression program which contributes to oncogenic signaling. This review focuses on the aberrant epigenetic activation of Wnt/β-catenin in the development of NAFLD-associated HCC. A deeper understanding of the molecular mechanisms underlying such deregulation may shed light on the identification of novel druggable epigenetic targets for the prevention and/or treatment of HCC in obese and diabetic patients.


The International Journal of Biochemistry & Cell Biology | 2012

The in vivo dynamic interplay of MDC1 and 53BP1 at DNA damage-induced nuclear foci.

Myth T.S. Mok; Beric R. Henderson

MDC1 (NFBD1) and 53BP1 are critical mediators of the mammalian DNA damage response (DDR) at nuclear foci. Here we show by quantitative imaging assays that MDC1 and 53BP1 are similar in total copy number (~1200 copies per focus), but differ substantially in dynamics at both replication-associated nuclear bodies in normal cells and DNA repair foci in ionizing radiation (IR)-damaged cells. The majority of MDC1 (~80%) is extremely mobile and under continuous exchange, with only a small fraction (~20%) remaining immobile at foci irrespective of IR treatment. By contrast, 53BP1 has a smaller mobile fraction (~35%) and a larger immobile fraction (~65%) at nuclear bodies, and becomes more dynamic (~20% increase in mobile pool) upon IR-induced DNA damage. More specifically, the dynamics of 53BP1 is dependent on a minimal foci-targeting region (1231-1709), and differentially regulated by its N-terminus (1-1231) and C-terminal tBRCT domain (1709-1972). Furthermore, MDC1 knockdown, or disruption of 53BP1-MDC1 interaction, reduced the number of 53BP1 molecules at foci by ~60%, but only modestly affected 53BP1 retention. This novel in vivo evidence reveals distinct dynamics of MDC1 and 53BP1 at different types of nuclear structures, and shows that MDC1 directly recruits and retains a subset of 53BP1 for DNA repair.


Radiotherapy and Oncology | 2012

Three-dimensional imaging reveals the spatial separation of γH2AX-MDC1-53BP1 and RNF8-RNF168-BRCA1-A complexes at ionizing radiation-induced foci.

Myth T.S. Mok; Beric R. Henderson

BACKGROUND AND PURPOSE Ionizing radiation (IR)-induced DNA damage causes the accumulation of DNA damage response (DDR) proteins as visible foci in cell nuclei. Despite the identified functional roles in DNA repair, the spatial relationships of different DDR proteins at foci have not been explicitly examined. This study aims to systematically compare the distribution of DDR proteins at IR-induced foci. MATERIALS AND METHODS MCF-7 cells were treated with IR, stained for γH2AX, MDC1, RNF8, RNF168, 53BP1, Abraxas (CCDC98), BRCA1, BRCC36, Merit40 (NBA1) and RAP80, and then imaged using high-resolution three-dimensional (3-D) confocal microscopy to assess the relative localization of proteins at foci. RESULTS All BRCA1-A complex components displayed strong co-localization, which overlapped significantly with RNF8 and RNF168, but not with γH2AX and MDC1. Intriguingly, 53BP1 co-located well with γH2AX and MDC1, but remained separate from RNF8 and RNF168. These co-localization patterns were consistent for at least 3h after IR. CONCLUSIONS The foci formations of γH2AX-MDC1-53BP1 and RNF8-RNF168-BRCA1-A complexes are spatially independent. Such divergence was not anticipated from prior studies on the recruitment of these proteins to foci. This information indicates that individual foci may represent distinct sites of DNA repair facilitated by a specific subset of DDR proteins.


Cancers | 2016

Characterization of Adenomatous Polyposis Coli Protein Dynamics and Localization at the Centrosome

Christina Lui; Myth T.S. Mok; Beric R. Henderson

The adenomatous polyposis coli (APC) tumor suppressor is a multifunctional regulator of Wnt signaling and acts as a mobile scaffold at different cellular sites. APC was recently found to stimulate microtubule (MT) growth at the interphase centrosome; however, little is known about its dynamics and localization at this site. To address this, we analysed APC dynamics in fixed and live cells by fluorescence microscopy. In detergent-extracted cells, we discovered that APC was only weakly retained at the centrosome during interphase suggesting a rapid rate of exchange. This was confirmed in living cells by fluorescence recovery after photobleaching (FRAP), which identified two pools of green fluorescent protein (GFP)-APC: a major rapidly exchanging pool (~86%) and minor retained pool (~14%). The dynamic exchange rate of APC was unaffected by C-terminal truncations implicating a targeting role for the N-terminus. Indeed, we mapped centrosome localization to N-terminal armadillo repeat (ARM) domain amino acids 334–625. Interestingly, the rate of APC movement to the centrosome was stimulated by intact MTs, and APC dynamics slowed when MTs were disrupted by nocodazole treatment or knockdown of γ-tubulin. Thus, the rate of APC recycling at the centrosome is enhanced by MT growth, suggesting a positive feedback to stimulate its role in MT growth.

Collaboration


Dive into the Myth T.S. Mok's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Lei

University of Sydney

View shared research outputs
Top Co-Authors

Avatar

Alfred S.L. Cheng

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge