Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Myung-Gil Kim is active.

Publication


Featured researches published by Myung-Gil Kim.


Nature Materials | 2011

Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing

Myung-Gil Kim; Mercouri G. Kanatzidis; Antonio Facchetti; Tobin J. Marks

The development of large-area, low-cost electronics for flat-panel displays, sensor arrays, and flexible circuitry depends heavily on high-throughput fabrication processes and a choice of materials with appropriate performance characteristics. For different applications, high charge carrier mobility, high electrical conductivity, large dielectric constants, mechanical flexibility or optical transparency may be required. Although thin films of metal oxides could potentially meet all of these needs, at present they are deposited using slow and equipment-intensive techniques such as sputtering. Recently, solution processing schemes with high throughput have been developed, but these require high annealing temperatures (T(anneal)>400 °C), which are incompatible with flexible polymeric substrates. Here we report combustion processing as a new general route to solution growth of diverse electronic metal oxide films (In(2)O(3), a-Zn-Sn-O, a-In-Zn-O, ITO) at temperatures as low as 200 °C. We show that this method can be implemented to fabricate high-performance, optically transparent transistors on flexible plastic substrates.


Journal of the American Chemical Society | 2011

Thieno[3,4-c]pyrrole-4,6-dione-based polymer semiconductors: toward high-performance, air-stable organic thin-film transistors.

Xugang Guo; Rocío Ponce Ortiz; Yan Zheng; Myung-Gil Kim; Shiming Zhang; Yan Hu; Gang Lu; Antonio Facchetti; Tobin J. Marks

We report a new p-type semiconducting polymer family based on the thieno[3,4-c]pyrrole-4,6-dione (TPD) building block, which exhibits good processability as well as good mobility and lifetime stability in thin-film transistors (TFTs). TPD homopolymer P1 was synthesized via Yamamoto coupling, whereas copolymers P2-P8 were synthesized via Stille coupling. All of these polymers were characterized by chemical analysis as well as thermal analysis, optical spectroscopy, and cyclic voltammetry. P2-P7 have lower-lying HOMOs than does P3HT by 0.24-0.57 eV, depending on the donor counits, and exhibit large oscillator strengths in the visible region with similar optical band gaps throughout the series (∼1.80 eV). The electron-rich character of the dialkoxybithiophene counits in P8 greatly compresses the band gap, resulting in the lowest E(g)(opt) in the series (1.66 eV), but also raising the HOMO energy to -5.11 eV. Organic thin-film transistor (OTFT) electrical characterization indicates that device performance is very sensitive to the oligothiophene conjugation length, but also to the solubilizing side chain substituents (length, positional pattern). The corresponding thin-film microstructures and morphologies were investigated by XRD and AFM to correlate with the OTFT performance. By strategically varying the oligothiophene donor conjugation length and optimizing the solubilizing side chains, a maximum OTFT hole mobility of ∼0.6 cm(2) V(-1) s(-1) is achieved for P4-based devices. OTFT environmental (storage) and operational (bias) stability in ambient was investigated, and enhanced performance is observed due to the low-lying HOMOs. These results indicate that the TPD is an excellent building block for constructing high-performance polymers for p-type transistor applications due to the excellent processability, substantial hole mobility, and good device stability.


Advanced Materials | 2015

Highly Skin‐Conformal Microhairy Sensor for Pulse Signal Amplification

Changhyun Pang; Ja Hoon Koo; Amanda Nguyen; Jeffrey M. Caves; Myung-Gil Kim; Alex Chortos; Kwanpyo Kim; Paul J. Wang; Jeffrey B.-H. Tok; Zhenan Bao

A bioinspired microhairy sensor is developed to enable ultraconformability on nonflat surfaces and significant enhancement in the signal-to-noise ratio of the retrieved signals. The device shows ≈12 times increase in the signal-to-noise ratio in the generated capacitive signals, allowing the ultraconformal microhair pressure sensors to be capable of measuring weak pulsations of internal jugular venous pulses stemming from a human neck.


Nature Communications | 2014

Selective metal deposition at graphene line defects by atomic layer deposition

Kwanpyo Kim; Han-Bo-Ram Lee; Richard W. Johnson; Jukka T. Tanskanen; Nan Liu; Myung-Gil Kim; Changhyun Pang; Chiyui Ahn; Stacey F. Bent; Zhenan Bao

One-dimensional defects in graphene have a strong influence on its physical properties, such as electrical charge transport and mechanical strength. With enhanced chemical reactivity, such defects may also allow us to selectively functionalize the material and systematically tune the properties of graphene. Here we demonstrate the selective deposition of metal at chemical vapour deposited graphenes line defects, notably grain boundaries, by atomic layer deposition. Atomic layer deposition allows us to deposit Pt predominantly on graphenes grain boundaries, folds and cracks due to the enhanced chemical reactivity of these line defects, which is directly confirmed by transmission electron microscopy imaging. The selective functionalization of graphene defect sites, together with the nanowire morphology of deposited Pt, yields a superior platform for sensing applications. Using Pt-graphene hybrid structures, we demonstrate high-performance hydrogen gas sensors at room temperature and show its advantages over other evaporative Pt deposition methods, in which Pt decorates the graphene surface non-selectively.


Journal of the American Chemical Society | 2010

Flexible low-voltage organic thin-film transistors enabled by low-temperature, ambient solution-processable inorganic/organic hybrid gate dielectrics

Young Geun Ha; Sunho Jeong; Jinsong Wu; Myung-Gil Kim; Vinayak P. Dravid; Antonio Facchetti; Tobin J. Marks

We report here on the design, synthesis, processing, and dielectric properties of novel cross-linked inorganic/organic hybrid blend (CHB) dielectric films which enable low-voltage organic thin-film transistor (OTFT) operation. CHB thin films (20-43 nm thick) are readily fabricated by spin-coating a zirconium chloride precursor plus an α,ω-disilylalkane cross-linker solution in ambient conditions, followed by curing at low temperatures (~150 °C). The very smooth CHB dielectrics exhibit excellent insulating properties (leakage current densities ~10(-7) A/cm(2)), tunable capacitance (95-365 nF/cm(2)), and high dielectric constants (5.0-10.2). OTFTs fabricated with pentacene as the organic semiconductor function well at low voltages (<-4.0 V). The morphologies and microstructures of representative semiconductor films grown on CHB dielectrics prepared with incrementally varied compositions and processing conditions are investigated and shown to correlate closely with the OTFT response.


Advanced Materials | 2016

Mechanically Durable and Highly Stretchable Transistors Employing Carbon Nanotube Semiconductor and Electrodes

Alex Chortos; Ghada I. Koleilat; Raphael Pfattner; Desheng Kong; Pei Lin; Roda Nur; Ting Lei; Huiliang Wang; Nan Liu; Ying-Chih Lai; Myung-Gil Kim; Jong Won Chung; Sangyoon Lee; Zhenan Bao

Mechanically durable stretchable trans-istors are fabricated using carbon nanotube electrical components and tough thermoplastic elastomers. After an initial conditioning step, the electrical characteristics remain constant with strain. The strain-dependent characteristics are similar in orthogonal stretching directions. Devices can be impacted with a hammer and punctured with a needle while remaining functional and stretchable.


Advanced Materials | 2015

Highly stable and imperceptible electronics utilizing photoactivated heterogeneous sol-gel metal-oxide dielectrics and semiconductors.

Jeong-Wan Jo; Jaekyun Kim; Kyung-Tae Kim; Jingu Kang; Myung-Gil Kim; Kwang-Ho Kim; Hyungduk Ko; Yong-Hoon Kim; Sung Kyu Park

Incorporation of Zr into an AlOx matrix generates an intrinsically activated ZAO surface enabling the formation of a stable semiconducting IGZO film and good interfacial properties. Photochemically annealed metal-oxide devices and circuits with the optimized sol-gel ZAO dielectric and IGZO semiconductor layers demonstrate the high performance and electrically/mechanically stable operation of flexible electronics fabricated via a low-temperature solution process.


Journal of the American Chemical Society | 2009

Low-Temperature Solution-Processed Amorphous Indium Tin Oxide Field-Effect Transistors

Hyun Sung Kim; Myung-Gil Kim; Young Geun Ha; Mercouri G. Kanatzidis; Tobin J. Marks; Antonio Facchetti

Amorphous indium tin oxide (ITO)-based thin-film transistors (TFTs) were fabricated on various dielectrics [SiO(2) and self-assembled nanodielectrics (SANDs)] by spin-coating an ITO film precursor solution consisting of InCl(3) and SnCl(4) as the sources of In(3+) and Sn(4+), respectively, methoxyethanol (solvent), and ethanolamine (base). These films can be annealed at temperatures T(a) < or = 250 degrees C and afford devices with excellent electrical characteristics. The optimized [In(3+)]/[In(3+) + Sn(4+)] molar ratio (0.7) and annealing temperature (T(a) = 250 degrees C) afford TFTs exhibiting electron mobilities of approximately 2 and approximately 10-20 cm(2) V(-1) s(-1) with SiO(2) and SAND, respectively, as the gate dielectric. Remarkably, ITO TFTs processed at 220 degrees C still exhibit electron mobilities of >0.2 cm(2) V(-1) s(-1), which is encouraging for processing on plastic substrates.


Journal of the American Chemical Society | 2012

Delayed Ignition of Autocatalytic Combustion Precursors: Low-Temperature Nanomaterial Binder Approach to Electronically Functional Oxide Films

Myung-Gil Kim; Jonathan W. Hennek; Hyun Sung Kim; Mercouri G. Kanatzidis; Antonio Facchetti; Tobin J. Marks

Delayed ignition of combustion synthesis precursors can significantly lower metal oxide film formation temperatures. From bulk In(2)O(3) precursor analysis, it is shown here that ignition temperatures can be lowered by as much as 150 °C. Thus, heat generation from ~60 nm thick In(2)O(3) films is sufficient to form crystalline In(2)O(3) films at 150 °C. Furthermore, we show that the low processing temperatures of sufficiently thick combustion precursor films can be applied to the synthesis of metal oxide nanocomposite films from nanomaterials overcoated/impregnated with the appropriate combustion precursor. The resulting, electrically well-connected nanocomposites exhibit significant enhancements in charge-transport properties vs conventionally processed oxide films while maintaining desirable intrinsic electronic properties. For example, while ZnO nanorod-based thin-film transistors exhibit an electron mobility of 10(-3)-10(-2) cm(2) V(-1) s(-1), encasing these nanorods within a ZnO combustion precursor-derived matrix enhances the electron mobility to 0.2 cm(2) V(-1) s(-1). Using commercially available ITO nanoparticles, the intrinsically high carrier concentration is preserved during nanocomposite film synthesis, and an ITO nanocomposite film processed at 150 °C exhibits a conductivity of ~10 S cm(-1) without post-reductive processing.


Journal of Materials Chemistry C | 2016

Controlled aqueous synthesis of ultra-long copper nanowires for stretchable transparent conducting electrode

Chahwan Hwang; Jihyun An; Byung Doo Choi; Kwanpyo Kim; Soon-Won Jung; Kang-Jun Baeg; Myung-Gil Kim; Kwang Min Ok; Jongin Hong

The environmentally benign synthesis of ultra-long copper nanowires with successful control of diameter and length for stretchable transparent conducting electrodes (TCEs) is reported. Ultra-long copper nanowires (CuNWs) with an average length of 92.5 μm (maximum length up to 260 μm) and an average diameter of 47 nm were synthesized using environmentally friendly water–alcohol mixtures and L-ascorbic acid as a reducing agent. A facile removal of insulating surface layers, such as organic capping molecules and copper oxide/hydroxide, by short-chain organic acid treatment allowed low contact resistance between the CuNWs without post-reductive treatment at elevated temperatures. The CuNWs were directly spray-coated on glass or polydimethylsiloxane (PDMS) at a low processing temperature of 130 °C. The CuNW TCE on a glass substrate exhibited a low sheet resistance of 23.1 Ohm sq−1 and a high optical transmittance of 84.1% at 550 nm. Furthermore, the CuNWs were directly spray-coated on stretchable PDMS, which showed a low sheet resistance of 4.1 Ohm sq−1 and a high optical transmittance of 70% at 550 nm.

Collaboration


Dive into the Myung-Gil Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tobin J. Marks

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong-Hoon Kim

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge