Myung-Hyun Ryou
Hanbat National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Myung-Hyun Ryou.
Advanced Materials | 2011
Myung-Hyun Ryou; Yong Min Lee; Jung-Ki Park; Jang Wook Choi
Due to high energy densities and excellent cycle lives, Li-ion batteries (LIBs) have rapidly spread into portable electronics applications. [ 1–3 ] However, their performance standards in various areas including energy and power densities, cycle lives, and safety concerns need to be improved further for the future emerging markets, particularly targeting sustainable road transportation represented by electric vehicles (EVs). [ 1 , 3–5 ] Among the various standards, the low power density should be urgently addressed to enable the emergence of those applications. [ 4 , 6 , 7 ]
Advanced Materials | 2013
Myung-Hyun Ryou; Jangbae Kim; Inhwa Lee; Sunjin Kim; You Kyeong Jeong; Seonki Hong; Ji Hyun Ryu; Taek-Soo Kim; Jung-Ki Park; Haeshin Lee; Jang Wook Choi
Conjugation of mussel-inspired catechol groups to various polymer backbones results in materials suitable as silicon anode binders. The unique wetness-resistant adhesion provided by the catechol groups allows the silicon nanoparticle electrodes to maintain their structure throughout the repeated volume expansion and shrinkage during lithiation cycling, thus facilitating substantially improved specific capacities and cycle lives of lithium-ion batteries.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Dae Soo Jung; Myung-Hyun Ryou; Yong Joo Sung; Seung Bin Park; Jang Wook Choi
The rice husk is the outer covering of a rice kernel and protects the inner ingredients from external attack by insects and bacteria. To perform this function while ventilating air and moisture, rice plants have developed unique nanoporous silica layers in their husks through years of natural evolution. Despite the massive amount of annual production near 108 tons worldwide, so far rice husks have been recycled only for low-value agricultural items. In an effort to recycle rice husks for high-value applications, we convert the silica to silicon and use it for high-capacity lithium battery anodes. Taking advantage of the interconnected nanoporous structure naturally existing in rice husks, the converted silicon exhibits excellent electrochemical performance as a lithium battery anode, suggesting that rice husks can be a massive resource for use in high-capacity lithium battery negative electrodes.
Chemsuschem | 2012
Ji Hoon Lee; Weon Ho Shin; Myung-Hyun Ryou; Jae Kyu Jin; Jun-Hyung Kim; Jang Wook Choi
Lithium ion capacitors (LICs) have recently drawn considerable attention because they utilize the advantages of supercapacitors (high power) and lithium ion batteries (high energy). However, the energy densities of conventional LICs, which consist of a pair of graphite and activated carbon electrodes, are limited by the small capacities of the activated carbon cathodes. To overcome this limitation, we have engaged urea-reduced graphene oxide. The amide functional groups generated during the urea reduction facilitate the enolization processes for reversible Li binding, which improves the specific capacity by 37 % compared to those of conventional systems such as activated carbon and hydrazine-reduced graphene oxide. Utilizing the increased Li binding capability, when evaluated based on the mass of the active materials on both sides, the LICs based on urea-reduced graphene oxide deliver a specific energy density of approximately 106 Wh kg(total) (-1) and a specific power density of approximately 4200 W kg(total) (-1) with perfect capacity retention up to 1000 cycles. These values are far superior to those of previously reported LICs and supercapacitors, which suggests that appropriately treated graphene can be a promising electrode material for LICs.
ACS Applied Materials & Interfaces | 2013
Dong Jin Lee; Hongkyung Lee; Myung-Hyun Ryou; Gi-Beom Han; Je-Nam Lee; Jongchan Song; Jaecheol Choi; Kuk Young Cho; Yong Min Lee; Jung-Ki Park
Mesoporous silicon nanofibers (m-SiNFs) have been fabricated using a simple and scalable method via electrospinning and reduction with magnesium. The prepared m-SiNFs have a unique structure in which clusters of the primary Si nanoparticles interconnect to form a secondary three-dimensional mesoporous structure. Although only a few nanosized primary Si particles lead to faster electronic and Li(+) ion diffusion compared to tens of nanosized Si, the secondary nanofiber structure (a few micrometers in length) results in the uniform distribution of the nanoparticles, allowing for the easy fabrication of electrodes. Moreover, these m-SiNFs exhibit impressive electrochemical characteristics when used as the anode materials in lithium ion batteries (LIBs). These include a high reversible capacity of 2846.7 mAh g(-1) at a current density of 0.1 A g(-1), a stable capacity retention of 89.4% at a 1 C rate (2 A g(-1)) for 100 cycles, and a rate capability of 1214.0 mAh g(-1) (at 18 C rate for a discharge time of ∼3 min).
ACS Applied Materials & Interfaces | 2014
Bongki Son; Myung-Hyun Ryou; Jaecheol Choi; Taejoo Lee; Hyung Kyun Yu; Jong Hun Kim; Yong Min Lee
The adhesion strength of lithium-ion battery (LIB) electrodes consisting of active material, a nanosized electric conductor, and a polymeric binder is measured with a new analysis tool, called the Surface and Interfacial Cutting Analysis System (SAICAS). Compared to the conventional peel test with the same electrode, SAICAS gives higher adhesion strength owing to its elaborate cutting-based measurement system. In addition, the effects on the adhesion property of the polymeric binder type and content, electrode density, and measuring point are also investigated to determine whether SAICAS provides reliable results. The findings confirm SAICAS as an effective and promising tool to measure and analyze the adhesion properties of LIB electrodes.
Macromolecular Research | 2014
Taejoo Lee; Wan-Keun Kim; Yunju Lee; Myung-Hyun Ryou; Yong Min Lee
In this study, we demonstrated the effects of aluminum oxide (Al2O3)-based ceramic coatings deposited by radio-frequency (RF) magnetron sputtering on commercial polyethylene (PE) microporous separators. Due to the superb thermal stability of the ceramic materials themselves, the Al2O3 coatings solved the chronic thermal shrinkage problem of PE separators. Separators with sputtered Al2O3 coatings maintained their initial dimensions even after high temperature exposure at 140 °C for 30 min. The sputtered Al2O3 layer effectively changed the surface of a PE separator from being hydrophobic to hydrophilic too, improving its wettability with liquid electrolyte. Additionally, a sputtered Al2O3 coating can improve the rate capability (~130%) compared with a bare PE separator under a high current density (7.75 mA cm-2, 5 C rate) because the layer does not require additional use of polymeric binder materials, which usually inhibit the formation of pore structures in microporous membranes.
Journal of Materials Chemistry | 2014
Joo-Seong Kim; Yonghee Lee; Inhwa Lee; Taek-Soo Kim; Myung-Hyun Ryou; Jang Wook Choi
The demand for lithium ion batteries (LIBs) in various flexible mobile electronic devices is continuously increasing. With this in mind, a vast number of smart approaches, such as implementation of conductive nanomaterials onto paper and textiles, have been recently demonstrated. Most of them were, however, limited to the single-cell level. In the present study, large area flexible battery modules were developed in an attempt to expand the knowledge and design accumulated from the single-cell level approaches to larger-scale applications. A multi-stacked configuration was adopted to produce a high areal energy density in each single-cell. Meanwhile textile-based electrodes on both sides grant mechanical stability, even on the module level, by efficiently releasing the stress generated during aggressive folding and rolling motions. Moreover, the connection between and stacking of the single-cells allow the wide tuning of the overall voltage and capacity of the module. This battery design should be immediately applicable to a broad range of outdoor, building, and military items.
ACS Applied Materials & Interfaces | 2015
Jaecheol Choi; Kyuman Kim; Jiseon Jeong; Kuk Young Cho; Myung-Hyun Ryou; Yong Min Lee
A highly adhesive and thermally stable copolyimide (P84) that is soluble in organic solvents is newly applied to silicon (Si) anodes for high energy density lithium-ion batteries. The Si anodes with the P84 binder deliver not only a little higher initial discharge capacity (2392 mAh g(-1)), but also fairly improved Coulombic efficiency (71.2%) compared with the Si anode using conventional polyvinylidene fluoride binder (2148 mAh g(-1) and 61.2%, respectively), even though P84 is reduced irreversibly during the first charging process. This reduction behavior of P84 was systematically confirmed by cyclic voltammetry and Fourier-transform infrared analysis in attenuated total reflection mode of the Si anodes at differently charged voltages. The Si anode with P84 also shows ultrastable long-term cycle performance of 1313 mAh g(-1) after 300 cycles at 1.2 A g(-1) and 25 °C. From the morphological analysis on the basis of scanning electron microscopy and optical images and of the electrode adhesion properties determined by surface and interfacial cutting analysis system and peel tests, it was found that the P84 binder functions well and maintains the mechanical integrity of Si anodes during hundreds of cycles. As a result, when the loading level of the Si anode is increased from 0.2 to 0.6 mg cm(-2), which is a commercially acceptable level, the Si anode could deliver 647 mAh g(-1) until the 300th cycle, which is still two times higher than the theoretical capacity of graphite at 372 mAh g(-1).
Journal of Materials Chemistry | 2013
Myung-Hyun Ryou; Seonki Hong; Martin Winter; Haeshin Lee; Jang Wook Choi
We report an alginate, extracted from brown seaweed as a polymeric binder for spinel LiMn2O4. The exceptional Mn2+ capture of the alginate extracted from brown seaweed resolves the chronic issue of a promising lithium battery cathode, LiMn2O4, upholding the feasibility of its use for emerging large-scale applications including electric vehicles.