N. Arul Murugan
Royal Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. Arul Murugan.
Physical Chemistry Chemical Physics | 2011
N. Arul Murugan; Jacob Kongsted; Zilvinas Rinkevicius; Keęstutis Aidas; Kurt V. Mikkelsen; Hans Ågren
The dimethylamino nitro stilbene (DANS) molecule is studied for exploring solvent effects on two-photon absorption using the quantum mechanical/molecular mechanical (QM/MM) response theory approach, where the quantum part is represented by density functional theory. We have explored the role of geometrical change of the chromophore in solution, the importance of taking a dynamical average over the sampled structures and the role of a granular representation of the polarization and electrostatic interactions with the classically described medium. The line shape function was simulated by the QM/MM technique thereby allowing for non-empirical prediction of the absolute two-photon cross section. We report a maximum in the TPA cross section for a medium of intermediate solvent polarity (i.e. in chloroform) and provide the grounds for an explanation of this effect which recently has been experimentally observed for a series of charge transfer species in solvents of different polarity. The calculations of absorption energies reproduce well the positive solvatochromic behavior of DANS and are in good agreement with experimental spectra available for the chloroform and DMSO solvents. In line with recent development of the QM/MM response technique for color modeling, we find this methodology to offer a versatile tool to predict and analyze two-photon absorption phenomena taking place within a medium.
Proceedings of the National Academy of Sciences of the United States of America | 2010
N. Arul Murugan; Jacob Kongsted; Zilvinas Rinkevicius; Hans Ågren
We have investigated the dependence of the static first hyperpolarizability on the bond-length alternation (BLA) parameter. Our analysis indicates that the validity of the first hyperpolarizability/BLA parameter relationship is restricted to the no-field, vacuum, limit, while it successively breaks down along with increasing polarity of a surrounding medium, becoming invalid, for instance, in an aqueous solution. This contention is based on a series of TD-DFT, TD-DFT/PCM and hybrid TD-DFT/MM calculations of the first hyperpolarizability for a set of molecular configurations generated from Car–Parrinello hybrid QM/MM simulations of the stilbazolium merocyanine chromophore in chloroform and water solvents, and on a rationalization by means of the two-state model for the first hyperpolarizability. The BLA dependence of the three parameters entering the two-state model is shown to be qualitatively different in vacuum and in solvents. Particularly, in the vacuum case, the difference between ground and excited state dipole moments goes to zero for a vanishing BLA, which is not true in the presence of an aqueous medium. In the aqueous medium, an opposing behavior of the parameters involved in the two-state model results in an almost constant first hyperpolarizability with varying BLA parameter.
Journal of Physical Chemistry B | 2010
N. Arul Murugan; Jacob Kongsted; Zilvinas Rinkevicius; Kestutis Aidas; Hans Ågren
We have performed Car-Parrinello mixed quantum mechanics/molecular mechanics (CP-QM/MM) calculations for stilbazolium merocyanine (SM) in polar and nonpolar solvents in order to explore the role of solute molecular geometry, solvation shell structure, and different interaction mechanisms on the absorption spectra and its dependence on solvent polarity. On the basis of the average bond length values and group charge distributions, we find that the SM molecule remains in a neutral quinonoid form in chloroform (a nonpolar solvent) while it transforms to a charge-separated benzenoid form in water (a polar solvent). Based on a quantum mechanical/molecular mechanical response technique, with different MM descriptions for the water environment, absorption spectra were obtained as averages over configurations derived from the CP-QM/MM simulations. We show that for SM in water the solute polarization plays a major role in predictions of the λ(max) and solvatochromic shift and that once this effect is included the contributions from solvent polarization and intermolecular charge transfer become less important. For SM in chloroform and water solvents, we have also performed absorption spectra calculations using a polarizable continuum model in order to address its relative performance compared to the QM/MM response technique. In the case of SM in water, our study supports the notion that, in order to predict accurate absorption spectra and solvatochromic shifts, it is important to use a discrete description of the solvent when it, as in water, is involved in site-specific interaction with the solute molecule. The technique is thus shown to outperform the more conventional polarizable continuum model in predicting the solvatochromic shift.
Physical Chemistry Chemical Physics | 2012
N. Arul Murugan; Jacob Kongsted; Zilvinas Rinkevicius; Hans Ågren
We present a strategy for modeling optical probes within heterogeneous environments of restricted dimension. The method is based on a multiphysics approach comprising sequential structure modeling by means of hybrid Car-Parrinello molecular dynamics and property modeling by means of quantum mechanics/molecular mechanics response theory. For demonstration we address the structural and optical properties of nile red within the β-lacto globulin protein. We consider the cases with the probe situated on the surface or within the cavity of the protein, or embedded in a water solvent. We find the absorption properties of the probe to be highly dependent on its position relative to the protein. Structural rearrangements of the optical probe are found to contribute significantly to these environmental effects.
Journal of Physical Chemistry B | 2012
Daniel L. Silva; N. Arul Murugan; Jacob Kongsted; Zilvinas Rinkevicius; Sylvio Canuto; Hans Ågren
Solvent effects on the one- and two-photon absorption (1PA and 2PA) of disperse orange 3 (DO3) in dimethyl sulfoxide (DMSO) are studied using a discrete polarizable embedding (PE) response theory. The scheme comprises a quantum region containing the chromophore and an atomically granulated classical region for the solvent accounting for full interactions within and between the two regions. Either classical molecular dynamics (MD) or hybrid Car-Parrinello (CP) quantum/classical (QM/MM) molecular dynamics simulations are employed to describe the solvation of DO3 in DMSO, allowing for an analysis of the effect of the intermolecular short-range repulsion, long-range attraction, and electrostatic interactions on the conformational changes of the chromophore and also the effect of the solute-solvent polarization. PE linear response calculations are performed to verify the character, solvatochromic shift, and overlap of the two lowest energy transitions responsible for the linear absorption spectrum of DO3 in DMSO in the visible spectral region. Results of the PE linear and quadratic response calculations, performed using uncorrelated solute-solvent configurations sampled from either the classical or hybrid CP QM/MM MD simulations, are used to estimate the width of the line shape function of the two electronic lowest energy excited states, which allow a prediction of the 2PA cross-sections without the use of empirical parameters. Appropriate exchange-correlation functionals have been employed in order to describe the charge-transfer process following the electronic transitions of the chromophore in solution.
Journal of Physical Chemistry A | 2009
N. Arul Murugan; Hans Ågren
Car-Parrinello molecular dynamics (CPMD) and Car-Parrinello mixed quantum mechanics/classical mechanics (CP-QM/MM) calculations were performed for o-betaine (OB) in the gas phase and water as solvent to study the solvent dependence on its molecular properties: geometry, charge distribution, and dipole moment. It is found that the molecular geometry in the gas phase is close to the planar structure, while in the water it is a twisted structure. The calculations clearly show that in both the gas phase and water the OB molecule is highly flexible with a large amplitude for the twist angle motion. The average gas-phase dipole moment for OB doubles in water, something that concords with a strong increase of total charge on phenoxide and pyridinium rings. We also investigated the solvatochromic shift in the pi-pi* and n-pi* transitions by carrying out INDO/CIS calculations for the gas-phase and solution-phase configurations obtained from the CPMD and CP-QM/MM calculations with results that are in good agreement with available experimental values (J. Chem. Soc., Perkin Trans. 2 1999, 1, 713). Our work indicates the importance of allowing full structural and dynamic flexibility of dye-solvent systems in predicting their basic solvatochromic properties.
Journal of Physical Chemistry Letters | 2013
N. Arul Murugan; Jógvan Magnus Haugaard Olsen; Jacob Kongsted; Zilvinas Rinkevicius; Kestutis Aidas; Hans Ågren
Motivated by future possibilities to design target molecules for fibrils with diagnostic or therapeutic capability related to amyloidosis diseases, we investigate in this work the dielectric nature of amyloid fibril microenvironments in different binding sites using an optical probe, thioflavin-T (THT), which has been used extensively to stain such fibrils. We study the fibril-environment-induced structural and spectral changes of THT at each binding site and compare the results to the fibril-free situation in aqueous solution. All binding sites are found to show a similar effect with respect to the conformational changes of THT; in the presence of the fibril, its molecular geometry tends to become planarized. However, depending on the dielectric nature of the specific binding site, a red shift, blue shift, or no shift in the absorption spectra of THT is predicted. Interestingly, the experimentally measured red shift in the spectra is seen only when THT binds to one of the core or surface-binding sites. It is found that the dielectric nature of the microenvironment in the fibril is strongly nonhomogeneous.
Journal of Chemical Physics | 2010
N. Arul Murugan; Prakash C. Jha; Zilvinas Rinkevicius; Kenneth Ruud; Hans Ågren
The present work addresses the solvatochromic shift of phenol blue (PB) dye. For this purpose the results of Car-Parrinello molecular dynamics (CPMD) simulations for PB in gas phase are compared with results obtained for PB in water from CPMD hybrid quantum mechanics-molecular mechanics (CPMD-QM/MM) calculations. The absorption spectra were obtained using the intermediate neglect of differential overlap/spectroscopic-configuration interaction (INDO/CIS) method and were calculated for a multitude of configurations of the trajectory. The calculated lambda(max) for PB in gas phase was found to be about 535 nm, which is considerably lower than the lambda(max) reported for PB in nonpolar solvents. Different solvation shells for PB in water have been defined based on the solute-all-atoms and solvent center of mass radial distribution function (g(r(X-O))). The electronic excitation energies for PB computed in the presence of solvent molecules in an increasing number of solvation shells were calculated in a systematic way to evaluate their contributions to the solvatochrmic shift. The inclusion of solvent molecules in the hydration shell yields a lambda(max) of 640 nm, which contributes to almost 78% of the solvatochromic shift. The inclusion of solvent molecules up to 10 A in the g(r(X-O)) rdf yields a lambda(max) of 670 nm which is in good agreement with the experimentally reported value of 654-684 nm. Overall, the present study suggests that the combined CPMD-QM/MM and INDO-CIS approach can be used successfully to model solvatochromic shifts of organic dye molecules.
Journal of the American Chemical Society | 2013
N. Arul Murugan; Rossen Apostolov; Zilvinas Rinkevicius; Jacob Kongsted; Erik Lindahl; Hans Ågren
Along with the growing evidence that relates membrane abnormalities to various diseases, biological membranes have been acknowledged as targets for therapy. Any such abnormality in the membrane structure alters the membrane potential which in principle can be captured by measuring properties of specific optical probes. There exists by now many molecular probes with absorption and fluorescence properties that are sensitive to local membrane structure and to the membrane potential. To suggest new high-performance optical probes for membrane-potential imaging it is important to understand in detail the membrane-induced structural changes in the probe, the membrane association dynamics of the probe, and its membrane-specific optical properties. To contribute to this effort, we here study an optical probe, N-acetylaladanamide (NAAA), in the presence of a POPC lipid bilayer using a multiscale integrated approach to assess the probe structure, dynamics, and optical properties in its membrane-bound status and in water solvent. We find that the probe eventually assimilates into the membrane with a specific orientation where the hydrophobic part of the probe is buried inside the lipid bilayer, while the hydrophilic part is exposed to the water solvent. The computed absorption maximum is red-shifted when compared to the gas phase. The computations of the two-photon absorption and second harmonic generation cross sections of the NAAA probe in its membrane-bound state which is of its first kind in the literature suggest that this probe can be used for imaging the membrane potential using nonlinear optical microscopy.
ChemPhysChem | 2013
Małgorzata Wielgus; Robert Zaleśny; N. Arul Murugan; Jacob Kongsted; Hans Ågren; Marek Samoc; Wojciech Bartkowiak
In this study, we report on the influence of solvent on the two-photon absorption (2PA) spectra of Reichardts dye (RD). The measurement of 2PA cross-sections is performed for three solvents (chloroform, dimethyl formamide, and dimethyl sulfoxide) using the Z-scan technique. The key finding of this study is the observation that the cross-section, corresponding to the 2PA of the intramolecular charge-transfer state, diminishes substantially upon increasing the solvent polarity. To unravel the solvent dependence of the 2PA cross-section, the electronic structure of RD is determined using a hybrid quantum mechanics/molecular mechanics (QM/MM) approach, in which polarization between the solute and solvent is taken into account by using a self-consistent scheme in the solvent polarization. The two-state approximation proves to be adequate for the studied system, and allowed the observed solvent-polarity-induced decrease of the 2PA cross-section to be related to the decrease of the transition moment and the increase in the excitation energy.