N. Dhananjaya
B.M.S. Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. Dhananjaya.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2012
D.V. Sunitha; C. Manjunatha; C.J. Shilpa; H. Nagabhushana; S.C. Sharma; B.M. Nagabhushana; N. Dhananjaya; C. Shivakumara; R.P.S. Chakradhar
A series of Pr(3+) (1-9 mol%) doped CdSiO(3) nanophosphors have been prepared for the first time by a low temperature solution combustion method using oxalyldihydrizide (ODH) as a fuel. The final product was characterized by Powder X-ray diffraction (PXRD), Fourier Transform Infrared Spectroscopy (FTIR), scanning electron microscopy (SEM), and UV-Vis spectroscopy. The average crystallite size was calculated using Debye-Scherrers formula and Williamson-Hall (W-H) plots and found to be in the range 31-37 nm. The optical energy band gap (E(g)) of undoped for Pr(3+) doped samples were estimated from Tauc relation which varies from 5.15-5.36 eV. Thermoluminescence (TL) properties of Pr(3+) doped CdSiO(3) nanophosphor has been investigated using γ-irradiation in the dose range 1-6 kGy at a heating rate of 5 °C s(-1). The phosphor shows a well resolved glow peak at ∼171 °C along with shouldered peak at 223 °C in the higher temperature side. It is observed that TL intensity increase with increase of Pr(3+) concentration. Further, the TL intensity at 171 °C is found to be increase linearly with increase in γ-dose which is highly useful in radiation dosimetry. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics was estimated by Luschiks method and the results are discussed.
Journal of Materials Science | 2015
Rohit Saraf; C. Shivakumara; N. Dhananjaya; Sukanti Behera; H. Nagabhushana
A series of scheelite-type Eu3+-activated CaMoO4 phosphors were synthesized by the nitrate–citrate gel combustion method. All the compounds crystallized in the tetragonal structure with space group I41/a (No. 88). FESEM results reveal the spherical-like morphology. The CaMoO4 phosphor exhibited broad emission centered at 500xa0nm under the excitation of 298xa0nm wavelength, while Eu3+-activated CaMoO4 shows an intense characteristic red emission peak at 615xa0nm at different excitation wavelengths, due to 5D0xa0→xa07F2 transition of Eu3+ ions. The intensities of transitions between different J levels depend on the symmetry of the local environment of Eu3+ ions and were estimated using the Judd–Ofelt analysis. The high asymmetric ratio revealed that Eu3+ occupies sites with a low symmetry and without an inversion center. The CIE chromaticity co-ordinates (x, y) were calculated from emission spectra, and the values were close to the NTSC standard. Therefore, the present phosphor is highly useful for LEDs applications.
RSC Advances | 2015
Rohit Saraf; C. Shivakumara; Sukanti Behera; H. Nagabhushana; N. Dhananjaya
Eu3+-activated layered BiOCl phosphors were synthesized by the conventional solid-state method at relatively low temperature and shorter duration (400 °C for 1 h). All the samples were crystallized in the tetragonal structure with the space group P4/nmm (no. 129). Field emission scanning electron microscopy (FE-SEM) studies confirmed the plate-like morphology. Photoluminescence spectra exhibit characteristic luminescent 5D0 → 7FJ (J = 0–4) intra-4f shell Eu3+ ion transitions. The electric dipole transition located at 620 nm (5D0 → 7F2) was stronger than the magnetic dipole transition located at 594 nm (5D0 → 7F1). The evaluated Commission International de lEclairage (CIE) color coordinates of Eu3+-activated BiOCl phosphors were close to the commercial Y2O3:Eu3+ and Y2O2S:Eu3+ red phosphors. Intensity parameters (Ω2, Ω4) and various radiative properties such as transition probability (Atot), radiative lifetime (τrad), stimulated emission cross-section (σe), gain bandwidth (σe × Δλeff) and optical gain (σe × τrad) were calculated using the Judd–Ofelt theory. The experimental decay curves of the 5D0 level in Eu3+-activated BiOCl have a single exponential profile. In comparison with other Eu3+ doped materials, Eu3+-activated BiOCl phosphors have a long lifetime (τexp), low non-radiative relaxation rate (WNR), high quantum efficiency (η) and better optical gain (σe × τrad). The determined radiative properties revealed the usefulness of Eu3+-activated BiOCl in developing red lasers as well as optical display devices. Further, these samples showed efficient photocatalytic activity for the degradation of rhodamine B (RhB) dye under visible light irradiation. These photocatalysts are useful for the removal of toxic and non-biodegradable organic pollutants in water.
RSC Advances | 2015
Rohit Saraf; C. Shivakumara; Sukanti Behera; N. Dhananjaya; H. Nagabhushana
A series of Bi1−xEuxOX (X = F and Br; x = 0, 0.01, 0.03 and 0.05) phosphors were synthesized at relatively low temperature and short duration (500 °C, 1 h). Rietveld refinement results verified that all the compounds were crystallized in the tetragonal structure with space group P4/nmm (no. 129). Photoluminescence spectra exhibit characteristic luminescence 5D0 → 7FJ (J = 0–4) intra-4f shell Eu3+ ion transitions. The magnetic dipole (5D0 → 7F1) transition dominates the emission of BiOF:Eu3+, while the electric dipole (5D0 → 7F2) peak was stronger in BiOBr:Eu3+ phosphors. The evaluated CIE color coordinates for Bi0.95Eu0.05OBr (0.632, 0.358) are close to the commercial Y2O3:Eu3+ (0.645, 0.347) and Y2O2S:Eu3+ (0.647, 0.343) red phosphors. Intensity parameters (Ω2, Ω4) and various radiative properties such as transition rates (A), branching ratios (β), stimulated emission cross-section (σe), gain bandwidth (σe × Δλeff) and optical gain (σe × τ) were calculated using the Judd–Ofelt theory. It was observed that BiOBr:Eu3+ phosphors have a long lifetime (τ) and better optical gain (σe × τ) as compared to reported Eu3+ doped materials. Furthermore, these compounds exhibit excellent photocatalytic activity for the degradation of rhodamine B dye under visible light irradiation. The determined radiative properties and photocatalytic results revealed that BiOBr:Eu3+ phosphors have potential applications in energy and environmental remedies, such as to develop red phosphors for white light-emitting diodes, red lasers and to remove toxic organic industrial effluents.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2015
C. Shivakumara; Rohit Saraf; Sukanti Behera; N. Dhananjaya; H. Nagabhushana
Eu(3+)-activated BaMoO4 phosphors were synthesized by the nitrate-citrate gel combustion method. The Rietveld refinement analysis confirmed that all the compounds were crystallized in the scheelite-type tetragonal structure with I41/a (No. 88) space group. Photoluminescence (PL) spectra of BaMoO4 phosphor reveals broad emission peaks at 465 and 605 nm, whereas the Eu(3+)-activated BaMoO4 phosphors show intense 615 nm ((5)D0→(7)F2) emission peak. Judd-Ofelt theory was applied to evaluate the intensity parameters (Ω2, Ω4) of Eu(3+)-activated BaMoO4 phosphors. The transition probabilities (AT), radiative lifetime (τrad), branching ratio (β), stimulated emission cross-section (σe), gain bandwidth (σe×Δλeff) and optical gain (σe×τrad) were investigated by using the intensity parameters. CIE color coordinates confirmed that the BaMoO4 and Eu(3+)-activated BaMoO4 phosphors exhibit white and red luminescence, respectively. The obtained results revealed that the present phosphors can be a potential candidate for red lasers and white LEDs applications.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2014
C.J. Shilpa; N. Dhananjaya; H. Nagabhushana; S.C. Sharma; C. Shivakumara; K.H. Sudheerkumar; B.M. Nagabhushana; R.P.S. Chakradhar
Gd(1.96-x)Y(x)Eu0.04O3 (x = 0.0, 0.49, 0.98, 1.47, 1.96 mol%) nanophosphors were synthesized by propellant combustion method at low temperature (400°C). The powder X-ray diffraction patterns of as formed Gd1.96Eu0.04O3 showed monoclinic phase, however with the addition of yttria it transforms from monoclinic to pure cubic phase. The porous nature increases with increase of yttria content. The particle size was estimated from Scherrers and W-H plots which was found to be in the range 30-40 nm. These results were in well agreement with transmission electron microscopy studies. The optical band gap energies estimated were found to be in the range 5.32-5.49 eV. PL emission was recorded under 305 nm excitation show an intense emission peak at 611 nm along with other emission peaks at 582, 641 nm. These emission peaks were attributed to the transition of (5)D0→(7)FJ (J = 0, 1, 2, 3) of Eu(3+) ions. It was observed that PL intensity increases with increase of Y content up to x = 0.98 and thereafter intensity decreases. CIE color co-ordinates indicates that at x = 1.47 an intense red bright color can be achieved, which could find a promising application in flat panel displays. The cubic and monoclinic phases show different thermoluminescence glow peak values measured under identical conditions. The response of the cubic phase to the applied dose showed good linearity, negligible fading, and simple glow curve structure than monoclinic phase indicating that suitability of this phosphor in dosimetric applications.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2012
D.V. Sunitha; H. Nagabhushana; Fouran Singh; S.C. Sharma; N. Dhananjaya; B.M. Nagabhushana; R.P.S. Chakradhar
This paper reports on the ionoluminescence (IL) of Zn(2)SiO(4):Eu(3+) nanophosphors bombarded with 100 MeV Si(7+) ions with fluences in the range (3.91-21.48)×10(12) ions cm(-2). The prominent IL emission peaks recorded at 580, 590, 612, 650 and 705 nm are attributed to the luminescence centers activated by Eu(3+) ions. It is observed that IL intensity decreases and saturates with increase of Si(7+) ion fluence. Fourier transform infrared (FT-IR) studies confirm surface/bulk amorphization for a fluence of (3.91-21.48)×10(13) ions cm(-2). These results show degradation of SiO (2ν(3)) bonds present on the surface of the sample and/or due to lattice disorder produced by dense electronic excitation under heavy ion irradiation. These results are discussed in detail.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2014
C.J. Shilpa; Akila Kadgathur Jayaram; N. Dhananjaya; H. Nagabhushana; S.C. Prashantha; D.V. Sunitha; S.C. Sharma; C. Shivakumara; B.M. Nagabhushana
GdAlO3, GdAlO3:Eu(3+) and GdAlO3:Eu(3+):Bi(3+) nanophosphors were synthesised by solution combustion technique. Pure orthorhombic phase was obtained from powder X-ray diffraction (PXRD) studies. Scanning electron microscopy (SEM) micrographs showed the porous, agglomerated and irregular shaped particles. The particle size obtained by transmission electron microscopy (TEM) measurement was in good agreement with the values obtained by Debye Scherrers and W-H plots. The selected area electron diffraction (SAED) pattern show single crystalline nature of the sample. Photoluminescence (PL) measurements were carried out for GdAlO3:Eu(3+) and GdAlO3:Eu(3+):Bi(3+) phosphors excited at a wavelength of 274nm. The characteristic emission peaks of Eu(3+) ions were recorded at 590, 614, 655 and 695nm corresponding to (5)D0→(7)FJ (J=1, 2, 3, 4) transitions respectively. However, with addition of Bi(3+) ions in GdAlO3:Eu(3+), PL intensity drastically enhanced. Orange red color was tuned to deep red color with the addition of Bi(3+) ions in GdAlO3:Eu(3+) phosphor. Therefore, the phosphor was highly useful as red component in WLEDs. A single well resoled glow peak at 225°C was recorded in GdAlO3 and GdAlO3:Eu(3+). Further, with addition of Bi(3+) ions, an additional peak at 300°C was recorded. TL glow curves of different UV-exposed GdAlO3:Eu(3+):Bi(3+) show two TL peaks at 207 and 300°C respectively. The 207°C peak show simple glow peak structure and its intensity increases linearly up to 25min and after that it decrease.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2013
A.A. Jahagirdar; N. Dhananjaya; D.L. Monika; C.R. Kesavulu; H. Nagabhushana; S.C. Sharma; B.M. Nagabhushana; C. Shivakumara; J.L. Rao; R.P.S. Chakradhar
α-Fe(2)O(3) nanoparticles were synthesized by a low temperature solution combustion method. The structural, magnetic and luminescence properties were studied. Powder X-ray diffraction (PXRD) pattern of α-Fe(2)O(3) exhibits pure rhombohedral structure. SEM micrographs reveal the dumbbell shaped particles. The EPR spectrum shows an intense resonance signal at g≈5.61 corresponding to isolated Fe(3+) ions situated in axially distorted sites, whereas the g≈2.30 is due to Fe(3+) ions coupled by exchange interaction. Raman studies show A(1g) (225 cm(-1)) and E(g) (293 and 409 cm(-1)) phonon modes. The absorption at 300 nm results from the ligand to metal charge transfer transitions whereas the 540 nm peak is mainly due to the (6)A(1)+(6)A(1)→(4)T(1)(4 G)+(4)T(1)(4 G) excitation of an Fe(3+)-Fe(3+) pair. A prominent TL glow peak was observed at 140°C at heating rate of 5 °Cs(-1). The trapping parameters namely activation energy (E), frequency factor (s) and order of kinetics (b) were evaluated and discussed.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2015
Rohit Saraf; C. Shivakumara; Sukanti Behera; H. Nagabhushana; N. Dhananjaya
Stolzite polymorph of PbWO4 catalyst was prepared by the facile room temperature precipitation method. Structural parameters were refined by the Rietveld analysis using powder X-ray data. PbWO4 was crystallized in the scheelite-type tetragonal structure with space group I41/a (No. 88). Field emission scanning electron microscopy revealed leaf like morphology. Photoluminescence spectra exhibit broad blue emission (425 nm) under the excitation of 356 nm. The photocatalytic degradation of Methylene blue, Rhodamine B and Methyl orange dyes were measured under visible illumination. The 100% dye degradation was observed for MB and RhB dyes within 60 and 105 min. The rate constant was found to be in the decreasing order of MB>RhB>MO which followed the 1st order kinetic mechanism. Therefore, PbWO4 can be a potential candidate for blue component in white LEDs and also acts as a catalyst for the treatment of toxic and non-biodegradable organic pollutants in water.