Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where N. G. Konopleva is active.

Publication


Featured researches published by N. G. Konopleva.


Mineralium Deposita | 2016

3D mineralogical mapping of the Kovdor phoscorite–carbonatite complex (Russia)

Julia A. Mikhailova; A.O. Kalashnikov; Victor A. Sokharev; Yakov A. Pakhomovsky; N. G. Konopleva; Victor N. Yakovenchuk; Ayya V. Bazai; P.M. Goryainov; Gregory Yu. Ivanyuk

The Kovdor baddeleyite–apatite–magnetite deposit in the Kovdor phoscorite–carbonatite pipe is situated in the western part of the zoned alkali-ultrabasic Kovdor intrusion (NW part of the Fennoscandinavian shield; Murmansk Region, Russia). We describe major intrusive and metasomatic rocks of the pipe and its surroundings using a new classification of phoscorite–carbonatite series rocks, consistent with the IUGS recommendation. The gradual zonation of the pipe corresponds to the sequence of mineral crystallization (forsterite–hydroxylapatite–magnetite–calcite). Crystal morphology, grain size, characteristic inclusions, and composition of the rock-forming and accessory minerals display the same spatial zonation pattern, as do the three minerals of economic interest, i.e. magnetite, hydroxylapatite, and baddeleyite. The content of Sr, rare earth elements (REEs), and Ba in hydroxylapatite tends to increase gradually at the expense of Si, Fe, and Mg from early apatite–forsterite phoscorite (margins of the pipe) through carbonate-free, magnetite-rich phoscorite to carbonate-rich phoscorite and phoscorite-related carbonatite (inner part). Magnetite displays a trend of increasing V and Ca and decreasing Ti, Mn, Si, Cr, Sc, and Zn from the margins to the central part of the pipe; its grain size initially increases from the wall rocks to the inner part and then decreases towards the central part; characteristic inclusions in magnetite are geikielite within the marginal zone of the phoscorite–carbonatite pipe, spinel within the intermediate zone, and ilmenite within the inner zone. The zoning pattern seems to have formed due to both cooling and rapid degassing (pressure drop) of a fluid-rich magmatic column and subsequent pneumatolytic and hydrothermal processes.


Geology of Ore Deposits | 2008

Amphiboles of the Khibiny alkaline pluton, Kola Peninsula, Russia

N. G. Konopleva; G. Yu. Ivanyuk; Ya. A. Pakhomovsky; V. N. Yakovenchuk; Yu. P. Men’shikov; Yu. A. Korchak

The rocks of the Khibiny pluton contain 25 amphibole varieties, including edenite, fluoredenite, kaersutite, pargasite, ferropargasite, hastingsite, magnesiohastingsite, katophorite, ferrikatophorite, magnesiokatophorite, magnesioferrikatophorite, magnesioferrifluorkatophorite, ferrimagnesiotaramite, ferrorichterite, potassium ferrorichterite, richterite, potassium richterite, potassium fluorrichterite, arfvedsonite, potassium arfvedsonite, magnesioarfvedsonite, magnesioriebeckite, ferriferronyboite, ferrinyboite, and ferroeckermannite. The composition of rock-forming amphiboles changes symmetrically relative to the Central Ring of the pluton; i.e., amphiboles enriched in K, Ca, Mg, and Si are typical of foyaite near and within the Central Ring. The Fe and Mn contents in amphiboles increase in the direction from marginal part of the pluton to its center. Foyaite of the marginal zone contains ferroeckermannite, richterite, arfvedsonite, and ferrorichterite; edenite is typical of foyaite and hornfels of the Minor Arc. Between the Minor Arc and the Central Ring, foyaite contains ferroeckermannite, arfvedsonite, and richterite; amphiboles in rischorrite, foidolite and hornfels of the Central Ring are (potassium) arfvedsonite, (potassium) richterite, magnesiokatophorite, magnesioarfvedsonite, ferroeckermannite, and ferriferronyboite; amphiboles in foyaite within the Central Ring, in the central part of the pluton, are arfvedsonite, magnesioarfvedsonite, ferriferronyboite, katophorite, and richterite. It is suggested that such zoning formed due to the alteration of foyaite by a foidolite melt intruded into the Main (Central) Ring Fault.


Geology of Ore Deposits | 2008

Pyroxenes of the Khibiny alkaline pluton, Kola Peninsula

V. N. Yakovenchuk; G. Yu. Ivanyuk; Ya. A. Pakhomovsky; Yu. P. Men’shikov; N. G. Konopleva; Yu. A. Korchak

Seven pyroxene varieties were identified in nepheline syenites and foidolites of the Khibiny pluton: enstatite, ferrosilite, diopside, hedenbergite, augite, aegirine-augite, and aegirine. Enstatite and augite are typical of alkaline and ultramafic rocks of dike series. Ferrosilite was found in country quartzitic hornfels. Diopside is a rock-forming mineral in alkaline and ultramafic rocks, alkali gabbroids, hornfels in xenoliths of volcanic and sedimentary rocks and foyaite, melteigite-urtite that assimilate them, and certain hydrothermal pegmatite veins. Hedenbergite was noted in hornfels from xenoliths of volcanic and sedimentary rocks and in a hydrothermal pegmatite vein at Mount Eveslogchorr. Aegirine-augite is the predominant pyroxene in all types of nepheline syenites, phonolites and tinguaites, foidolites, alkaline and ultramafic rocks of dike series, fenitized wall rocks surrounding the pluton, and xenoliths of Devonian volcanic and sedimentary rocks. Aegirine is an abundant primary or, more often, secondary mineral in nepheline syenites, foidolites, and hydrothermal pegmatite veins. It occurs as separate crystals, outer zones of diopside and aegirine-augite crystals, and homoaxial pseudomorphs after Na-Ca amphiboles. Microprobe analyses of 265 pyroxenes samples allowed us to distinguish ten principal trends of isomorphic replacement and corresponding typomorphic features of pyroxenes. Compositional variations in clinopyroxenes along the sampled 35-km profile from the margin of the Khibiny pluton to its center confirm the symmetric zoning of the foyaite pluton relative to semicircular faults of the Minor Arc and the Main (Central) Ring marked by Devonian volcanic and sedimentary rocks, foidolites, and related metasomatic rocks (rischorrite, albitite, and aegirinite). Changes in the composition of pyroxenes are explained mainly by the redistribution of elements between coexisting minerals of foyaites in the process of their intense differentiation under the effect of foidolite melts that have intruded into the circular fault zones.


Geology of Ore Deposits | 2007

Corundum-group minerals in rocks of the Khibiny alkaline pluton, Kola Peninsula

G. Yu. Ivanyuk; Ya. A. Pakhomovsky; N. G. Konopleva; V. N. Yakovenchuk; Yu. P. Men’shikov; Yu. A. Mikhailova

Five minerals of the corundum group have been identified in the Khibiny pluton with certainty. Corundum proper and karelianite occur only in hornfels after volcanic and sedimentary rocks. Xenoliths of hornfels mark the ring faults that bound foidalite within the field of foyaite. Hematite occurs in hydrothermally altered nepheline syenite and crosscutting hydrothermal veins related to the ring faults. Minerals of the ilmenite-pyrophanite series are present in all rocks of the pluton, including veins. Accessory ilmenite in foyaite varies from the manganese variety and pyrophanite in the inner and outer parts of the pluton to manganese-free ilmenite in zone of the Main Ring Fault. In xenoliths of volcanic rocks and alkaline ultramafic rocks, ilmenite is enriched in magnesium. The zoning in distribution of the above-mentioned minerals and the character of variation in their compositions from margins of the pluton to its center are consistent with the petrochemical zoning formed as a result of foyaite alteration of near ring faults.


Geology of Ore Deposits | 2010

Rock-Forming feldspars of the Khibiny alkaline pluton, Kola Peninsula, Russia

G. Yu. Ivanyuk; Ya. A. Pakhomovsky; N. G. Konopleva; A.O. Kalashnikov; Yu. A. Korchak; Ekaterina A. Selivanova; V. N. Yakovenchuk

This paper describes the structural-compositional zoning of the well-known Khibiny pluton in regard to rock-forming feldspars. The content of K-Na-feldspars increases inward and outward from the Main foidolite ring. The degree of coorientation of tabular K-Na-feldspar crystals sharply increases in the Main ring zone, and microcline-dominant foyaite turns into orthoclase-dominant foyaite. The composition of K-Na-feldspars in the center of the pluton and the Main ring zone is characterized by an enrichment in Al. This shift is compensated by a substitution of some K and Na with Ba (the Main ring zone) or by an addition of K and Na cations to the initially cation-deficient microcline (the central part of the pluton). Feldspars of volcanosedimentary rocks occurring as xenoliths in foyaite primarily corresponded to plagioclase An15–40, but high-temperature fenitization and formation of hornfels in the Main ring zone gave rise to the crystallization of anorthoclase subsequently transformed into orthoclase and albite due to cooling and further fenitization. Such a zoning is the result of filling the Main ring fault zone within the homogeneous foyaite pluton with a foidolite melt, which provided the heating and potassium metasomatism of foyaite and xenoliths of volcanosedimentary rocks therein. The process eventually led to the transformation of foyaite into rischorrite-lyavochorrite, while xenoliths were transformed into aluminum hornfels with anorthoclase, annite, andalusite, topaz, and sekaninaite.


Geology of Ore Deposits | 2014

Typomorphism of fluorapatite in the Khibiny alkaline pluton, Kola Peninsula

N. G. Konopleva; G. Yu. Ivanyuk; Ya. A. Pakhomovsky; V. N. Yakovenchuk; Yu. A. Mikhailova

The zoning of accessory and rock-forming fluorapatite in the Khibiny pluton is discussed in its content, morphology, and chemical composition. The concentrations of Na, REE, and Si impurities in fluorapatite decrease from the margin and center of the pluton to the Major Ring, composed of melteigiteurtite and rischorrite. Within this structure, the purest apatite is characteristic of the high-grade ore in large deposits, where it occurs free of Na, and REE, as well as Sr in place of Ca. The fractal dimension of fluorapatite aggregates in all textural types of apatite-nepheline rocks (ores) corresponds to the dimension of fractures. Along with mineralogy of apatite-nepheline rocks and zoning of host foidolite, this feature indicates the superimposed character of apatite mineralization.


Geology of Ore Deposits | 2017

Loparite-(Ce) from the Khibiny Alkaline Pluton, Kola Peninsula, Russia

N. G. Konopleva; G. Yu. Ivanyuk; Ya. A. Pakhomovsky; V. N. Yakovenchuk; Yu. A. Mikhailova

Data on the occurrence, morphology, anatomy, composition, and formation conditions of loparite-(Ce) in the Khibiny alkaline pluton are given. Loparite-(Ce), (Na,Ce,Sr)(Ce,Th)(Ti,Nb)2O6, resulted from metasomatic alteration and assimilation of metamorphic host rocks at the contact with foyaite as well as foyaite on the contact with foidolite. This alteration was the highest in pegmatite, and albitite developed there. A decrease in temperature resulted in enrichment of the perovskite and tausonite endmembers in loparite-(Ce) owing to a decrease in the loparite and lueshite endmembers. La and Ce sharply predominate among rare earth elements in the composition of loparite-(Ce).


Geology of Ore Deposits | 2015

Typochemistry of rinkite and products of its alteration in the Khibiny Alkaline pluton, Kola Peninsula

N. G. Konopleva; G. Yu. Ivanyuk; Ya. A. Pakhomovsky; V. N. Yakovenchuk; Yu. A. Mikhailova; Ekaterina A. Selivanova

The occurrence, morphology, and composition of rinkite are considered against the background of zoning in the Khibiny pluton. Accessory rinkite is mostly characteristic of foyaite in the outer part of pluton, occurs somewhat less frequently in foyaite and rischorrite in the central part of pluton, even more sparsely in foidolites and apatite–nepheline rocks, and sporadically in fenitized xenoliths of the Lovozero Formation. The largest, up to economic, accumulations of rinkite are related to the pegmatite and hydrothermal veins, which occur in nepheline syenite on both sides of the Main foidolite ring. The composition of rinkite varies throughout the pluton. The Ca, Na, and F contents in accessory rinkite and amorphous products of its alteration progressively increase from foyaite and fenitized basalt of the Lovozero Formation to foidolite, rischorrite, apatite–nepheline rocks, and pegmatite–hydrothermal veins.


Ore Geology Reviews | 2016

Scandium of the Kovdor baddeleyite–apatite–magnetite deposit (Murmansk Region, Russia): Mineralogy, spatial distribution, and potential resource

Andrei O. Kalashnikov; V. N. Yakovenchuk; Ya. A. Pakhomovsky; Ayya V. Bazai; V.A. Sokharev; N. G. Konopleva; Julia A. Mikhailova; P.M. Goryainov; G. Yu. Ivanyuk


Ore Geology Reviews | 2016

Economic minerals of the Kovdor baddeleyite-apatite-magnetite deposit, Russia: mineralogy, spatial distribution and ore processing optimization

G. Yu. Ivanyuk; A.O. Kalashnikov; Ya. A. Pakhomovsky; Julia A. Mikhailova; V. N. Yakovenchuk; N. G. Konopleva; V.A. Sokharev; Ayya V. Bazai; P.M. Goryainov

Collaboration


Dive into the N. G. Konopleva's collaboration.

Top Co-Authors

Avatar

G. Yu. Ivanyuk

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ya. A. Pakhomovsky

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

V. N. Yakovenchuk

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

A.O. Kalashnikov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ayya V. Bazai

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P.M. Goryainov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge