N. Gehrke
University of Mainz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. Gehrke.
International Archives of Allergy and Immunology | 2007
Karina Gisch; N. Gehrke; Matthias Bros; Christina Priesmeyer; Jürgen Knop; Angelika B. Reske-Kunz; Stephan Sudowe
Background: Bacterial infections are supposed to act counterregulatory to the development of allergen-specific Th2 immune responses. We analyzed whether administration of extracellular Staphylococcus aureus inhibited experimental sensitization against allergens. Methods: BALB/c mice were immunized with alum-adsorbed ovalbumin (OVA) together with formalin-fixed Staphylococcus particles. OVA-specific antibody production and cytokine synthesis by spleen cells was analyzed. Airway reactivity and cellular infiltration into the airways was assessed after intranasal challenge of mice with OVA. In addition, the capacity of Staphylococcus particles to modulate cytokine production by bone marrow-derived dendritic cells was analyzedin vitro. Results: Simultaneous application of OVA and Staphylococcus particles very efficiently inhibited production of specific IgE and IgG1 as well as secretion of IL-4 and IL-5 by splenocytes, while enhancing IgG2a formation and production of IFN-γ, indicating a shift from a Th2 response towards a Th1-biased response. This effect was not dependent on the expression of protein A by Staphylococcus. An enhanced frequency or activity of regulatory T cells after administration of Staphylococcus particles was not apparent. Treatment of mice with Staphylococcus particles during the sensitization phase prevented lung inflammation (airway hyperreactivity, eosinophilia) after local challenge with OVA. Culture of bone marrow-derived dendritic cells with Staphylococcus particles induced IL-12p35 and p40 mRNA expression as well as secretion of IL-12p70, and increased production of IL-10 mRNA and protein. Conclusions: Administration of formalin-fixed Staphylococcus particles induced Th1-biased immune responses and prevented allergic sensitization.
Cell Death and Disease | 2013
Tobias Kohl; N. Gehrke; Arno Schad; M Nagel; Marcus-Alexander Wörns; Martin F. Sprinzl; Tim Zimmermann; You-Wen He; Peter R. Galle; Marcus Schuchmann; Jörn M. Schattenberg
The endemic occurrence of obesity and the associated risk factors that constitute the metabolic syndrome have been predicted to lead to a dramatic increase in chronic liver disease. Non-alcoholic steatohepatitis (NASH) has become the most frequent liver disease in countries with a high prevalence of obesity. In addition, hepatic steatosis and insulin resistance have been implicated in disease progression of other liver diseases, including chronic viral hepatitis and hepatocellular carcinoma. The molecular mechanisms underlying the link between insulin signaling and hepatocellular injury are only partly understood. We have explored the role of the antiapoptotic caspase-8 homolog cellular FLICE-inhibitory protein (cFLIP) on liver cell survival in a diabetic model with hypoinsulinemic diabetes in order to delineate the role of insulin signaling on hepatocellular survival. cFLIP regulates cellular injury from apoptosis signaling pathways, and loss of cFLIP was previously shown to promote injury from activated TNF and CD95/Apo-1 receptors. In mice lacking cFLIP in hepatocytes (flip−/−), loss of insulin following streptozotocin treatment resulted in caspase- and c-Jun N-terminal kinase (JNK)-dependent liver injury after 21 days. Substitution of insulin, inhibition of JNK using the SP600125 compound in vivo or genetic deletion of the mitogen-activated protein kinase (MAPK)9 (JNK2) in all tissues abolished the injurious effect. Strikingly, the difference in injury between wild-type and cFLIP-deficient mice occurred only in vivo and was accompanied by liver-infiltrating inflammatory cells with a trend toward increased amounts of NK1.1-positive cells and secretion of proinflammatory cytokines. Transfer of bone marrow from rag-1-deficient mice that are depleted from B and T lymphocytes prevented liver injury in flip−/− mice. These findings support a direct role of insulin on cellular survival by alternating the activation of injurious MAPK, caspases and the recruitment of inflammatory cells to the liver. Thus, increasing resistance to insulin signaling pathways in hepatocytes appears to be an important factor in the initiation and progression of chronic liver disease.
Cell Death & Differentiation | 2015
N. Gehrke; Garcia-Bardon D; Mann A; Arno Schad; Y Alt; Marcus-Alexander Wörns; Martin F. Sprinzl; Tim Zimmermann; Menke J; Anna Janina Engstler; Ina Bergheim; You-Wen He; Peter R. Galle; Marcus Schuchmann; Jörn M. Schattenberg
Apoptosis signaling is involved in both physiological tissue homeostasis and acute and chronic diseases. The role of regulatory apoptosis signaling molecules and their organ-specific functions are less defined. Therefore, we investigated the loss of the anti-apoptotic cellular FLICE-inhibitory protein (cFLIP) and the mechanisms of the resulting lethal organ failure in vivo using inducible knockout mice. These were generated by crossing floxed cFLIP mice to a tamoxifen inducible Rosa26-creERT2 mouse strain. Death following global loss of cFLIP resulted from liver failure, accumulation of M1-polarized macrophages and accompanying hepatic cell death and inflammation. Apoptosis was also prominent in immune cells, the kidney and intestinal epithelial cells (IECs) but not in cardiomyocytes. Cellular injury led to the release of damage-associated molecular patterns (DAMPs) and the induction of innate immune receptors including toll-like receptors (TLRs) 4 and 9, and stimulator of interferon genes (STING). Transplantation of bone marrow with intact cFLIP or depletion of macrophages prevented the phenotype of acute liver failure. Interestingly, compound deletion of cFLIP in bone marrow-derived cells and hepatocytes did not promote organ failure. Thus, cFLIP exerts a critical role in tissue homeostasis by preventing the activation of monocytic cells and innate immunity, which causes cell death and inflammation in susceptible tissues. These results encourage the development of organ-specific anti-apoptotic and anti-inflammatory therapies in acute organ failure.
Cell Death and Disease | 2017
Yvonne Huber; N. Gehrke; Jana Biedenbach; Susanne Helmig; Perikles Simon; Beate K. Straub; Ina Bergheim; T. Huber; Detlef Schuppan; Peter R. Galle; Marcus A. Wörns; Marcus Schuchmann; Jörn M. Schattenberg
Physical activity confers a broad spectrum of health benefits. Beyond the obvious role in metabolically driven diseases, the role of physical activity in acute liver injury is poorly explored. To study the role of physical activity in acute liver injury, a novel model of voluntary distance running in mice was developed and mice were subjected to acute liver injury induced by N-galactosamine (GalN) and lipopolysaccharide (LPS). Analyses included histological stains, immunoblotting, qRT-PCR and FACS analysis. Voluntary distance running increased to an average of 10.3 km/day after a learning curve. Running lead to a decrease in the absolute numbers of intrahepatic CD4+ T and B lymphocytes and macrophages after 7 weeks. In parallel, hepatic mRNA expression of inflammatory cytokines including IL-6 and IL-1beta, TGF-beta and monocyte chemoattractant protein-1 (MCP-1/CCL2) were suppressed, while TNF-α was not affected by exercise. Likewise, expression of the macrophage-specific antigen F4/80 was downregulated 1.6-fold from exercise. Notably, acute liver injury from GaIN/LPS was significantly blunted following 7 weeks of voluntary exercise as determined by liver histology, a 84.6% reduction of alanine aminotransferase (P<0.01) and a 54.6% reduction of aspartate aminotransferase (P<0.05) compared with sedentary mice. Additionally, proinflammatory cytokines, activation of caspase 3 and JNK were significantly lower, while antiapoptotic protein A20 increased. Voluntary distance running alters the intrahepatic immune phenotype producing an environment that is less susceptible to acute liver injury.
Journal of Hepatology | 2018
N. Gehrke; Nadine Hövelmeyer; Ari Waisman; Beate K. Straub; Julia Weinmann-Menke; Marcus A. Wörns; Peter R. Galle; Jörn M. Schattenberg
BACKGROUND & AIMS Interleukin (IL)-1-type cytokines including IL-1α, IL-1β and interleukin-1 receptor antagonist (IL-1Ra) are among the most potent molecules of the innate immune system and exert biological activities through the ubiquitously expressed interleukin-1 receptor type 1 (IL-1R1). The role of IL-1R1 in hepatocytes during acute liver failure (ALF) remains undetermined. METHODS The role of IL-1R1 during ALF was investigated using a novel transgenic mouse model exhibiting deletion of all signaling-capable IL-1R isoforms in hepatocytes (Il1r1Hep-/-). RESULTS ALF induced by D-galactosamine (D-GalN) and lipopolysaccharide (LPS) was significantly attenuated in Il1r1Hep-/- mice leading to reduced mortality. Conditional deletion of Il1r1 decreased activation of injurious c-Jun N-terminal kinases (JNK)/c-Jun signaling, activated nuclear factor-kappa B (NF-κB) p65, inhibited extracellular signal-regulated kinase (ERK) and prevented caspase 3-mediated apoptosis. Moreover, Il1r1Hep-/- mice exhibited reduced local and systemic inflammatory cytokine and chemokine levels, especially TNF-α, IL-1α/β, IL-6, CC-chemokine ligand 2 (CCL2), C-X-C motif ligand 1 (CXCL-1) and CXCL-2, and a reduced neutrophil recruitment into the hepatic tissue in response to injury. NLRP3 inflammasome expression and caspase 1 activation were suppressed in the absence of the hepatocellular IL-1R1. Inhibition of IL-1R1 using IL-1ra (anakinra) attenuated the severity of liver injury, while IL-1α administration exaggerated it. These effects were lost ex vivo and at later time points, supporting a role of IL-1R1 in inflammatory signal amplification during acute liver injury. CONCLUSION IL-1R1 in hepatocytes plays a pivotal role in an IL-1-driven auto-amplification of cell death and inflammation in the onset of ALF. LAY SUMMARY Acute liver injury which can cause lethal liver failure is medicated by a class of proteins called cytokines. Among these, interleukin-1 (IL-1) and the corresponding receptor IL-1R1 play a prominent role in the immune system, but their role in the liver is undetermined. In the current study, a novel mouse model with defective IL-1R1 in liver cells was studied. Mice lacking this receptor in liver cells were protected from cell death to a certain extent. This protection occurred only in the presence of other, neighboring cells, arguing for the involvement of proteins derived from these cells. This effect is called paracrine signaling and the current study has for the first time shown that the IL-1R1 receptor on hepatocytes is involved in acute liver failure in this context. The approved drug anakinra - which blocks IL-1R1 - had the same effect, supporting the proposed mechanism of action. The findings of this study suggest new treatment options for patients with acute liver failure by blocking defined signals of the immune system.
Oncotarget | 2017
N. Gehrke; Marcus A. Wörns; Amrit Mann; Yvonne Huber; Nadine Hoevelmeyer; Thomas Longerich; Ari Waisman; Peter R. Galle; Jörn M. Schattenberg
The transcriptional nuclear factor kappa B (NF-κB)-coactivator B cell leukemia-3 (Bcl-3) is a molecular regulator of cell death and proliferation. Bcl-3 has been shown to be widely expressed in different cancer types including hepatocellular carcinoma (HCC). Its influence on hepatocarcinogenesis is still undetermined. To examine the role of Bcl-3 in hepatocarcinogenesis mice with hepatocyte-specific overexpression of Bcl-3 (Bcl-3Hep) were exposed to diethylnitrosamine (DEN) and phenobarbital (PB). Hepatic Bcl-3 overexpression attenuated DEN/PB-induced hepatocarcinogenesis. Bcl-3Hep mice exhibited a lower number and smaller tumor nodules in response to DEN/PB at 40 weeks of age. Reduced HCC formation was accompanied by a lower rate of cell proliferation and a distinct expression pattern of growth and differentiation-related genes. Activation of c-Jun N-terminal kinase (JNK) and especially extracellular-signal regulated kinase (ERK) was reduced in tumor and tumor-surrounding liver tissue of Bcl-3Hep mice, while p38 and NF-κB p65 were phosphorylated to a higher extent compared to the wild type. In parallel, the absolute number of intrahepatic macrophages, CD8+ T cells and activated B cells was reduced in DEN/PB-treated Bcl-3Hep mice mirroring a reduction of tumor-associated inflammation. Interestingly, at the early time point of 7 weeks following tumor initiation, a higher rate of apoptotic cell death was observed in Bcl-3Hep mice. In summary, hepatocyte-restricted Bcl-3 overexpression reduced hepatocarcinogenesis related to prolonged liver injury early after tumor initiation likely due to decreased survival of DEN/PB-damaged, premalignant cells. Therefore, Bcl-3 could become a novel player in the development of therapeutic and diagnostic tools for HCC.
Tumor Biology | 2018
M Nagel; Julia Schulz; Annett Maderer; Katrin Goepfert; N. Gehrke; Thomas Thomaidis; Peter C. Thuss-Patience; Salah E Al-Batran; Susanna Hegewisch-Becker; Peter P. Grimminger; Peter R. Galle; Markus Möhler; Jörn M. Schattenberg
Background: Gastric cancer is common malignancy and exhibits a poor prognosis. At the time of diagnosis, the majority of patients present with metastatic disease which precludes curative treatment. Non-invasive biomarkers which discriminate early from advanced stages or predict the response to treatment are urgently required. This study explored the cytokeratin-18 fragment M30 and full-length cytokeratin-18 M65 in predicting treatment response and survival in a randomized, placebo-controlled trial of advanced gastric cancer. Methods: Patients enrolled in the SUN-CASE study received sunitinib or placebo as an adjunct to standard therapy with leucovorin (Ca-folinate), 5-fluorouracil, and irinotecan in second or third line. Treatment response rates, progression-free survival and overall survival were assessed during a follow-up period of 12 months. Cytokeratin-18 fragments were analyzed in 52 patients at baseline and day 14 of therapy. Results: Levels of M30 correlated with the presence of metastasis and lymph node involvement and decreased significantly during chemotherapy. Importantly, baseline levels of M30 were significantly higher in patients who failed therapy. In addition, patients who did not respond to treatment were also identifiable at day 14 based on elevated M30 levels. By stepwise regression analysis, M30 at day 14 was identified as independent predictor of treatment response. Likewise, serum levels of full-length cytokeratin-18 M65 at baseline also correlated with treatment failure and progression-free survival. The addition of sunitinib did not exert any effects on serum levels of M30 or M65. Conclusion: The cytokeratin-18 fragment M30 at day 14 identifies patients that fail to second- or third-line therapy for advanced gastric cancer. Validation of this non-invasive biomarker in gastric cancer is warranted.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2018
N. Gehrke; M Nagel; Beate K. Straub; Marcus A. Wörns; Marcus Schuchmann; Peter R. Galle; Jörn M. Schattenberg
Cholestatic liver injury results from impaired bile flow or metabolism and promotes hepatic inflammation and fibrogenesis. Toxic bile acids that accumulate in cholestasis induce apoptosis and contribute to early cholestatic liver injury, which is amplified by accompanying inflammation. The aim of the current study was to evaluate the role of the antiapoptotic caspase 8-homolog cellular FLICE-inhibitory (cFLIP) protein during acute cholestatic liver injury. Transgenic mice exhibiting hepatocyte-specific deletion of cFLIP (cFLIP-/-) were used for in vivo and in vitro analysis of cholestatic liver injury using bile duct ligation (BDL) and the addition of bile acids ex vivo. Loss of cFLIP in hepatocytes promoted acute cholestatic liver injury early after BDL, which was characterized by a rapid release of proinflammatory and chemotactic cytokines (TNF, IL-6, IL-1β, CCL2, CXCL1, and CXCL2), an increased presence of CD68+ macrophages and an influx of neutrophils in the liver, and resulting apoptotic and necrotic hepatocyte cell death. Mechanistically, liver injury in cFLIP-/- mice was aggravated by reactive oxygen species, and sustained activation of the JNK signaling pathway. In parallel, cytoprotective NF-κB p65, A20, and the MAPK p38 were inhibited. Increased injury in cFLIP-/- mice was accompanied by activation of hepatic stellate cells and profibrogenic regulators. The antagonistic caspase 8-homolog cFLIP is a critical regulator of acute, cholestatic liver injury. NEW & NOTEWORTHY The current paper explores the role of a classical modulator of hepatocellular apoptosis in early, cholestatic liver injury. These include activation of NF-κB and MAPK signaling, production of inflammatory cytokines, and recruitment of neutrophils in response to cholestasis. Because these signaling pathways are currently exploited in clinical trials for the treatment of nonalcoholic steatohepatitis and cirrhosis, the current data will help in the development of novel pharmacological options in these indications.
Oncotarget | 2017
Johanna Vollmar; Anja Lautem; Ellen Closs; Detlef Schuppan; Y.O. Kim; Daniel Grimm; Jens U. Marquardt; Peter Fuchs; Beate K. Straub; Arno Schad; Dirk Gründemann; Jörn M. Schattenberg; N. Gehrke; Marcus A. Wörns; Jan Baumgart; Peter R. Galle; Tim Zimmermann
Background Organic cation transporters (OCT) are responsible for the uptake of a broad spectrum of endogenous and exogenous substrates. Downregulation of OCT is frequently observed in human hepatocellular carcinoma (HCC) and is associated with a poor outcome. The aim of our current study was to elucidate the impact of OCT3 on hepatocarcinogenesis. Methods Transcriptional and functional loss of OCT was investigated in primary murine hepatocytes, derived from Oct3-knockout (Oct3−/−; FVB.Slc22a3tm1Dpb) and wildtype (WT) mice. Liver tumors were induced in Oct3−/− and WT mice with Diethylnitrosamine and Phenobarbital over 10 months and characterized macroscopically and microscopically. Key survival pathways were investigated by Western Blot analysis. Results Loss of Oct3−/− in primary hepatocytes resulted in significantly reduced OCT activity determined by [3H]MPP+ uptake in vivo. Furthermore, tumor size and quantity were markedly enhanced in Oct3−/− mice (p<0.0001). Oct3−/− tumors showed significant higher proliferation (p<0.0001). Ki-67 and Cyclin D expression were significantly increased in primary Oct3−/− hepatocytes after treatment with the OCT inhibitors quinine or verapamil (p<0.05). Functional inhibition of OCT by quinine resulted in an activation of c-Jun N-terminal kinase (Jnk), especially in Oct3−/− hepatocytes. Conclusion Loss of Oct3 leads to enhanced proliferation and hepatocarcinogenesis in vivo.
Journal of Hepatology | 2016
N. Gehrke; Marcus A. Wörns; Yvonne Huber; Moritz Hess; Beate K. Straub; Nadine Hövelmeyer; Ari Waisman; Y.O. Kim; Detlef Schuppan; Peter R. Galle; Jörn M. Schattenberg
BACKGROUND & AIMS The pathomechanisms underlying non-alcoholic fatty liver disease (NAFLD) and the involved molecular regulators are incompletely explored. The nuclear factor-kappa B (NF-κB)-cofactor gene B cell leukemia-3 (Bcl-3) plays a critical role in altering the transcriptional capacity of NF-κB - a key inducer of inflammation - but also of genes involved in cellular energy metabolism. METHODS To define the role of Bcl-3 in non-alcoholic steatohepatitis (NASH), we developed a novel transgenic mouse model with hepatocyte-specific overexpression of Bcl-3 (Bcl-3Hep) and employed a high-fat, high-carbohydrate dietary feeding model. To characterize the transgenic model, deep RNA sequencing was performed. The relevance of the findings was confirmed in human liver samples. RESULTS Hepatocyte-specific overexpression of Bcl-3 led to pronounced metabolic derangement, characterized by enhanced hepatic steatosis from increased de novo lipogenesis and uptake, as well as decreased hydrolysis and export of fatty acids. Steatosis in Bcl-3Hep mice was accompanied by an augmented inflammatory milieu and liver cell injury. Moreover, Bcl-3 expression decreased insulin sensitivity and resulted in compensatory regulation of insulin-signaling pathways. Based on in vivo and in vitro studies we identified the transcription factors PPARα, PPARγ and PGC-1α as critical regulators of hepatic metabolism and inflammation downstream of Bcl-3. Metformin treatment improved the metabolic and inflammatory phenotype in Bcl-3Hep mice through modulation of PPARα and PGC-1α. Remarkably, these findings were recapitulated in human NASH, which exhibited increased expression and nuclear localization of Bcl-3. CONCLUSIONS In summary, Bcl-3 emerges as a novel regulator of hepatic steatosis, insulin sensitivity and inflammation in NASH. LAY SUMMARY Non-alcoholic fatty liver disease (NAFLD) is considered the most prevalent liver disease worldwide. Patients can develop end-stage liver disease resulting in liver cirrhosis or hepatocellular carcinoma, but also develop complications unrelated to liver disease, e.g., cardiovascular disease. Still there is no full understanding of the mechanisms that cause NAFLD. In this study, genetically engineered mice were employed to examine the role of a specific protein in the liver that is involved in inflammation and the metabolism, namely Bcl-3. By this approach, a better understanding of the mechanisms contributing to disease progression was established. This can help to develop novel therapeutic and diagnostic options for patients with NAFLD.