N. Hamlin
Wellcome Trust Sanger Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. Hamlin.
Nature | 1998
Stewart T. Cole; Roland Brosch; Julian Parkhill; Thierry Garnier; Carol Churcher; David Harris; Stephen V. Gordon; Karin Eiglmeier; S. Gas; Clifton E. Barry; Fredj Tekaia; K. L. Badcock; D. Basham; D. Brown; Tracey Chillingworth; R. Connor; Robert Davies; K. Devlin; Theresa Feltwell; S. Gentles; N. Hamlin; S. Holroyd; T. Hornsby; Kay Jagels; Anders Krogh; J. McLean; Sharon Moule; Lee Murphy; Karen Oliver; J. Osborne
Countless millions of people have died from tuberculosis, a chronic infectious disease caused by the tubercle bacillus. The complete genome sequence of the best-characterized strain of Mycobacterium tuberculosis, H37Rv, has been determined and analysed in order to improve our understanding of the biology of this slow-growing pathogen and to help the conception of new prophylactic and therapeutic interventions. The genome comprises 4,411,529 base pairs, contains around 4,000 genes, and has a very high guanine + cytosine content that is reflected in the biased amino-acid content of the proteins. M. tuberculosis differs radically from other bacteria in that a very large portion of its coding capacity is devoted to the production of enzymes involved in lipogenesis and lipolysis, and to two new families of glycine-rich proteins with a repetitive structure that may represent a source of antigenic variation.
Nature | 2001
Stewart T. Cole; Karin Eiglmeier; Julian Parkhill; K. D. James; Nicholas R. Thomson; Paul R. Wheeler; Nadine Honoré; Thierry Garnier; Carol Churcher; David Harris; Karen Mungall; D. Basham; D. Brown; Tracey Chillingworth; R. Connor; Robert Davies; K. Devlin; S. Duthoy; Theresa Feltwell; A. Fraser; N. Hamlin; S. Holroyd; T. Hornsby; Kay Jagels; Céline Lacroix; J. Maclean; Sharon Moule; Lee Murphy; Karen Oliver; Michael A. Quail
Leprosy, a chronic human neurological disease, results from infection with the obligate intracellular pathogen Mycobacterium leprae, a close relative of the tubercle bacillus. Mycobacterium leprae has the longest doubling time of all known bacteria and has thwarted every effort at culture in the laboratory. Comparing the 3.27-megabase (Mb) genome sequence of an armadillo-derived Indian isolate of the leprosy bacillus with that of Mycobacterium tuberculosis (4.41 Mb) provides clear explanations for these properties and reveals an extreme case of reductive evolution. Less than half of the genome contains functional genes but pseudogenes, with intact counterparts in M. tuberculosis, abound. Genome downsizing and the current mosaic arrangement appear to have resulted from extensive recombination events between dispersed repetitive sequences. Gene deletion and decay have eliminated many important metabolic activities including siderophore production, part of the oxidative and most of the microaerophilic and anaerobic respiratory chains, and numerous catabolic systems and their regulatory circuits.
Nature | 2001
Julian Parkhill; Brendan W. Wren; Nicholas R. Thomson; Richard W. Titball; Matthew T. G. Holden; Michael B. Prentice; Mohammed Sebaihia; K. D. James; Carol Churcher; Karen Mungall; Stephen Baker; D. Basham; Stephen D. Bentley; Karen Brooks; Ana Cerdeño-Tárraga; Tracey Chillingworth; A. Cronin; Robert Davies; Paul Davis; Gordon Dougan; Theresa Feltwell; N. Hamlin; S. Holroyd; Kay Jagels; Andrey V. Karlyshev; S. Leather; Sharon Moule; Petra C. F. Oyston; Michael A. Quail; Kim Rutherford
The Gram-negative bacterium Yersinia pestis is the causative agent of the systemic invasive infectious disease classically referred to as plague, and has been responsible for three human pandemics: the Justinian plague (sixth to eighth centuries), the Black Death (fourteenth to nineteenth centuries) and modern plague (nineteenth century to the present day). The recent identification of strains resistant to multiple drugs and the potential use of Y. pestis as an agent of biological warfare mean that plague still poses a threat to human health. Here we report the complete genome sequence of Y. pestis strain CO92, consisting of a 4.65-megabase (Mb) chromosome and three plasmids of 96.2 kilobases (kb), 70.3 kb and 9.6 kb. The genome is unusually rich in insertion sequences and displays anomalies in GC base-composition bias, indicating frequent intragenomic recombination. Many genes seem to have been acquired from other bacteria and viruses (including adhesins, secretion systems and insecticidal toxins). The genome contains around 150 pseudogenes, many of which are remnants of a redundant enteropathogenic lifestyle. The evidence of ongoing genome fluidity, expansion and decay suggests Y. pestis is a pathogen that has undergone large-scale genetic flux and provides a unique insight into the ways in which new and highly virulent pathogens evolve.
Nature | 2005
Ludwig Eichinger; J. A. Pachebat; G. Glöckner; Marie-Adele Rajandream; Richard Sucgang; Matthew Berriman; J. Song; Rolf Olsen; Karol Szafranski; Qikai Xu; Budi Tunggal; Sarah K. Kummerfeld; B. A. Konfortov; Francisco Rivero; Alan Thomas Bankier; R. Lehmann; N. Hamlin; Robert Davies; Pascale Gaudet; Petra Fey; Karen E Pilcher; Guokai Chen; David L. Saunders; Erica Sodergren; Paul Davis; Arnaud Kerhornou; X. Nie; Neil Hall; Christophe Anjard; Lisa Hemphill
The social amoebae are exceptional in their ability to alternate between unicellular and multicellular forms. Here we describe the genome of the best-studied member of this group, Dictyostelium discoideum. The gene-dense chromosomes of this organism encode approximately 12,500 predicted proteins, a high proportion of which have long, repetitive amino acid tracts. There are many genes for polyketide synthases and ABC transporters, suggesting an extensive secondary metabolism for producing and exporting small molecules. The genome is rich in complex repeats, one class of which is clustered and may serve as centromeres. Partial copies of the extrachromosomal ribosomal DNA (rDNA) element are found at the ends of each chromosome, suggesting a novel telomere structure and the use of a common mechanism to maintain both the rDNA and chromosomal termini. A proteome-based phylogeny shows that the amoebozoa diverged from the animal–fungal lineage after the plant–animal split, but Dictyostelium seems to have retained more of the diversity of the ancestral genome than have plants, animals or fungi.
Nature | 2001
Julian Parkhill; Gordon Dougan; K. D. James; Nicholas R. Thomson; Derek Pickard; John Wain; Carol Churcher; Karen Mungall; Stephen D. Bentley; Matthew T. G. Holden; Mohammed Sebaihia; Stephen Baker; D. Basham; Karen Brooks; Tracey Chillingworth; Phillippa L. Connerton; A. Cronin; Paul Davis; Robert Davies; L. Dowd; Nicholas J. White; Jeremy Farrar; Theresa Feltwell; N. Hamlin; Ashraful Haque; Tran Tinh Hien; S. Holroyd; Kay Jagels; Anders Krogh; Tom Larsen
Salmonella enterica serovar Typhi (S. typhi) is the aetiological agent of typhoid fever, a serious invasive bacterial disease of humans with an annual global burden of approximately 16 million cases, leading to 600,000 fatalities. Many S. enterica serovars actively invade the mucosal surface of the intestine but are normally contained in healthy individuals by the local immune defence mechanisms. However, S. typhi has evolved the ability to spread to the deeper tissues of humans, including liver, spleen and bone marrow. Here we have sequenced the 4,809,037-base pair (bp) genome of a S. typhi (CT18) that is resistant to multiple drugs, revealing the presence of hundreds of insertions and deletions compared with the Escherichia coli genome, ranging in size from single genes to large islands. Notably, the genome sequence identifies over two hundred pseudogenes, several corresponding to genes that are known to contribute to virulence in Salmonella typhimurium. This genetic degradation may contribute to the human-restricted host range for S. typhi. CT18 harbours a 218,150-bp multiple-drug-resistance incH1 plasmid (pHCM1), and a 106,516-bp cryptic plasmid (pHCM2), which shows recent common ancestry with a virulence plasmid of Yersinia pestis.
Nature Genetics | 2003
Julian Parkhill; Mohammed Sebaihia; Andrew Preston; Lee Murphy; Nicholas R. Thomson; David Harris; Matthew T. G. Holden; Carol Churcher; Stephen D. Bentley; Karen Mungall; Ana Cerdeño-Tárraga; Louise M. Temple; Keith James; Barbara Harris; Michael A. Quail; Mark Achtman; Rebecca Atkin; Steven Baker; David Basham; Nathalie Bason; Inna Cherevach; Tracey Chillingworth; Matthew Collins; Anne Cronin; Paul Davis; Jonathan Doggett; Theresa Feltwell; Arlette Goble; N. Hamlin; Heidi Hauser
Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica are closely related Gram-negative β-proteobacteria that colonize the respiratory tracts of mammals. B. pertussis is a strict human pathogen of recent evolutionary origin and is the primary etiologic agent of whooping cough. B. parapertussis can also cause whooping cough, and B. bronchiseptica causes chronic respiratory infections in a wide range of animals. We sequenced the genomes of B. bronchiseptica RB50 (5,338,400 bp; 5,007 predicted genes), B. parapertussis 12822 (4,773,551 bp; 4,404 genes) and B. pertussis Tohama I (4,086,186 bp; 3,816 genes). Our analysis indicates that B. parapertussis and B. pertussis are independent derivatives of B. bronchiseptica-like ancestors. During the evolution of these two host-restricted species there was large-scale gene loss and inactivation; host adaptation seems to be a consequence of loss, not gain, of function, and differences in virulence may be related to loss of regulatory or control functions.
Nature | 2000
Julian Parkhill; Mark Achtman; K. D. James; Stephen D. Bentley; C. Churcher; S. R. Klee; G. Morelli; D. Basham; D. Brown; Tracey Chillingworth; Robert Davies; Paul Davis; K. Devlin; Theresa Feltwell; N. Hamlin; S. Holroyd; Kay Jagels; S. Leather; Sharon Moule; Karen Mungall; Michael A. Quail; Marie-Adele Rajandream; Kim Rutherford; Mark Simmonds; J. Skelton; S. Whitehead; B. G. Spratt; Bart Barrell
Neisseria meningitidis causes bacterial meningitis and is therefore responsible for considerable morbidity and mortality in both the developed and the developing world. Meningococci are opportunistic pathogens that colonize the nasopharynges and oropharynges of asymptomatic carriers. For reasons that are still mostly unknown, they occasionally gain access to the blood, and subsequently to the cerebrospinal fluid, to cause septicaemia and meningitis. N. meningitidis strains are divided into a number of serogroups on the basis of the immunochemistry of their capsular polysaccharides; serogroup A strains are responsible for major epidemics and pandemics of meningococcal disease, and therefore most of the morbidity and mortality associated with this disease. Here we have determined the complete genome sequence of a serogroup A strain of Neisseria meningitidis, Z2491 (ref. 1). The sequence is 2,184,406 base pairs in length, with an overall G+C content of 51.8%, and contains 2,121 predicted coding sequences. The most notable feature of the genome is the presence of many hundreds of repetitive elements, ranging from short repeats, positioned either singly or in large multiple arrays, to insertion sequences and gene duplications of one kilobase or more. Many of these repeats appear to be involved in genome fluidity and antigenic variation in this important human pathogen.
Nature | 1999
Sharen Bowman; D. Lawson; D. Basham; D. Brown; Tracey Chillingworth; Carol Churcher; Alister G. Craig; Robert Davies; K. Devlin; Theresa Feltwell; S. Gentles; R. Gwilliam; N. Hamlin; David J. Harris; S. Holroyd; T. Hornsby; Paul Horrocks; Kay Jagels; B. Jassal; S. Kyes; J. McLean; Sharon Moule; Karen Mungall; Lee Murphy; Karen Oliver; Michael A. Quail; Marie-Adele Rajandream; Simon Rutter; J. Skelton; R. Squares
Analysis of Plasmodium falciparum chromosome 3, and comparison with chromosome 2, highlights novel features of chromosome organization and gene structure. The sub-telomeric regions of chromosome 3 show a conserved order of features, including repetitive DNA sequences, members of multigene families involved in pathogenesis and antigenic variation, a number of conserved pseudogenes, and several genes of unknown function. A putative centromere has been identified that has a core region of about 2 kilobases with an extremely high (adenine + thymidine) composition and arrays of tandem repeats. We have predicted 215 protein-coding genes and two transfer RNA genes in the 1,060,106-base-pair chromosome sequence. The predicted protein-coding genes can be divided into three main classes: 52.6% are not spliced, 45.1% have a large exon with short additional 5′ or 3′ exons, and 2.3% have a multiple exon structure more typical of higher eukaryotes.
Nature | 2002
Neil Hall; Arnab Pain; Matthew Berriman; Carol Churcher; Barbara Harris; David Harris; Karen Mungall; Sharen Bowman; Rebecca Atkin; Stephen Baker; Andy Barron; Karen Brooks; Caroline O. Buckee; C. Burrows; Inna Cherevach; Tracey Chillingworth; Z. Christodoulou; Louise Clark; Richard Clark; Craig Corton; Ann Cronin; Robert Davies; Paul Davis; P. Dear; F. Dearden; Jonathon Doggett; Theresa Feltwell; Arlette Goble; Ian Goodhead; R. Gwilliam
Since the sequencing of the first two chromosomes of the malaria parasite, Plasmodium falciparum, there has been a concerted effort to sequence and assemble the entire genome of this organism. Here we report the sequence of chromosomes 1, 3–9 and 13 of P. falciparum clone 3D7—these chromosomes account for approximately 55% of the total genome. We describe the methods used to map, sequence and annotate these chromosomes. By comparing our assemblies with the optical map, we indicate the completeness of the resulting sequence. During annotation, we assign Gene Ontology terms to the predicted gene products, and observe clustering of some malaria-specific terms to specific chromosomes. We identify a highly conserved sequence element found in the intergenic region of internal var genes that is not associated with their telomeric counterparts.
Infection and Immunity | 2001
Stacy M. Townsend; Naomi Kramer; Robert Edwards; Stephen Baker; N. Hamlin; Mark Simmonds; Kim Stevens; Stanley R. Maloy; Julian Parkhill; Gordon Dougan; Andreas J. Bäumler
ABSTRACT Salmonella enterica serotype Typhi differs from nontyphoidal Salmonella serotypes by its strict host adaptation to humans and higher primates. Since fimbriae have been implicated in host adaptation, we investigated whether the serotype Typhi genome contains fimbrial operons which are unique to this pathogen or restricted to typhoidal Salmonella serotypes. This study established for the first time the total number of fimbrial operons present in an individual Salmonella serotype. The serotype Typhi CT18 genome, which has been sequenced by the Typhi Sequencing Group at the Sanger Centre, contained a type IV fimbrial operon, an orthologue of the agf operon, and 12 putative fimbrial operons of the chaperone-usher assembly class. In addition tosef, fim, saf, and tcf, which had been described previously in serotype Typhi, we identified eight new putative chaperone-usher-dependent fimbrial operons, which were termedbcf, sta, stb, ste, std, stc, stg, and sth. Hybridization analysis performed with 16 strains ofSalmonella reference collection C and 22 strains ofSalmonella reference collection B showed that all eight putative fimbrial operons of serotype Typhi were also present in a number of nontyphoidal Salmonella serotypes. Thus, a simple correlation between host range and the presence of a single fimbrial operon seems at present unlikely. However, the serotype Typhi genome differed from that of all other Salmonella serotypes investigated in that it contained a unique combination of putative fimbrial operons.