Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where N. Nishino is active.

Publication


Featured researches published by N. Nishino.


Review of Scientific Instruments | 2003

Gas puff imaging of edge turbulence (invited)

Ricardo Jose Maqueda; G. A. Wurden; D.P. Stotler; S. J. Zweben; B. LaBombard; J. L. Terry; John L. Lowrance; V.J. Mastrocola; George F. Renda; D. A. D’Ippolito; J. R. Myra; N. Nishino

The gas puff imaging (GPI) diagnostic can be used to study the turbulence present at the edge of magnetically confined plasmas. In this diagnostic the instantaneous two-dimensional (2D) radial vs poloidal structure of the turbulence is measured using fast-gated cameras and discrete fast chords. By imaging a controlled neutral gas puff, of typically helium or deuterium, the brightness and contrast of the turbulent emission fluctuations are increased and the structure can be measured independently of natural gas recycling. In addition, recent advances in ultrafast framing cameras allow the turbulence to be followed in time. The gas puff itself does not perturb the edge turbulence and the neutral gas does not introduce fluctuations in the emission that could possibly arise from a nonsmooth (turbulent) neutral gas puff. Results from neutral transport and atomic physics simulations using the DEGAS 2 code are discussed showing that the observed line emission is sensitive to modulations in both the electron density and the electron temperature. The GPI diagnostic implementation in the National Spherical Torus Experiment (NSTX) and Alcator C-Mod tokamak is presented together with example results from these two experiments.


Physics of Plasmas | 2001

Initial physics results from the National Spherical Torus Experiment

S.M. Kaye; M.G. Bell; R. E. Bell; J. Bialek; T. Bigelow; M. Bitter; P.T. Bonoli; D. S. Darrow; Philip C. Efthimion; J.R. Ferron; E.D. Fredrickson; D.A. Gates; L. Grisham; J. Hosea; D.W. Johnson; R. Kaita; S. Kubota; H.W. Kugel; Benoit P. Leblanc; R. Maingi; J. Manickam; T. K. Mau; R. J. Maqueda; E. Mazzucato; J. Menard; D. Mueller; B.A. Nelson; N. Nishino; M. Ono; F. Paoletti

The mission of the National Spherical Torus Experiment (NSTX) is to extend the understanding of toroidal physics to low aspect ratio (R/a approximately equal to 1.25) in low collisionality regimes. NSTX is designed to operate with up to 6 MW of High Harmonic Fast Wave (HHFW) heating and current drive, 5 MW of Neutral Beam Injection (NBI) and Co-Axial Helicity Injection (CHI) for non-inductive startup. Initial experiments focused on establishing conditions that will allow NSTX to achieve its aims of simultaneous high-bt and high-bootstrap current fraction, and to develop methods for non-inductive operation, which will be necessary for Spherical Torus power plants. Ohmic discharges with plasma currents up to 1 MA and with a range of shapes and configurations were produced. Density limits in deuterium and helium reached 80% and 120% of the Greenwald limit respectively. Significant electron heating was observed with up to 2.3 MW of HHFW. Up to 270 kA of toroidal current for up to 200 msec was produced noninductively using CHI. Initial NBI experiments were carried out with up to two beam sources (3.2 MW). Plasmas with stored energies of up to 140 kJ and bt =21% were produced.


Nuclear Fusion | 2005

H-mode confinement of Heliotron J

F. Sano; T. Mizuuchi; K. Kondo; K. Nagasaki; Hiroyuki Okada; S. Kobayashi; K. Hanatani; Y. Nakamura; S. Yamamoto; Y. Torii; Yasuhiro Suzuki; Hiroyuki Shidara; M. Kaneko; Hajime Arimoto; T. Azuma; Jun Arakawa; Keisuke Ohashi; M. Kikutake; Nobuhide Shimazaki; T. Hamagami; G. Motojima; H. Yamazaki; Masaki Yamada; H. Kitagawa; T. Tsuji; H. Nakamura; Shinya Watanabe; S. Murakami; N. Nishino; M. Yokoyama

The L–H transition in a helical-axis heliotron, Heliotron J, is investigated. For electron cyclotron heating (ECH), neutral beam injection (NBI) heating and ECH + NBI combination heating plasmas, the confinement quality of the H-mode is examined with an emphasis on its magnetic configuration dependence. The vacuum edge rotational transform, ι(a)/2π, is chosen as a label for the magnetic configuration where ι/2π is the rotational transform and a is the average plasma minor radius in metres. The experimental ι(a)/2π dependence of the enhancement factor over the L-mode confinement reveals that specific configurations exist where high-quality H-modes (1.3 < HISS95 < 1.8) are attained. is the experimental global energy confinement time and is the confinement time scaling from the international stellarator database given as . R is the plasma major radius in metres, is the line-averaged plasma density in 1019 m−3, PL is the power loss in megawatts that accounts for the time derivative of the total plasma energy content and Bt is the toroidal magnetic field strength in tesla (Stroth U. et al 1996 Nucl. Fusion 36 1063). The ι (a)/2π ranges for these configurations are near values that are slightly less than those of the major natural resonances of Heliotron J, i.e. n/m = 4/8, 4/7 and 12/22. To better understand this configuration dependence, the geometrical poloidal viscous damping rate coefficient, Cp, is calculated for different values of ι(a)/2π and compared with the experimental results. The threshold line-averaged density of the H-mode, which depends on the configuration, is in the region of 0.7–2.0 × 1019 m−3 in ECH (0.29 MW) + NBI (0.57 MW) operation. As for the edge plasma characteristics, Langmuir probe measurements have shown a reduced fluctuation-induced transport in the region that begins inside the last closed flux surface (LCFS) and extends into the scrape-off layer. In addition, a negative radial electric field Er (or Er-shear) is simultaneously formed near the LCFS at the transition.


Nuclear Fusion | 2002

Effect of boronization on ohmic plasmas in NSTX

C.H. Skinner; H.W. Kugel; R. Maingi; W.R. Wampler; W. Blanchard; M.G. Bell; R.E. Bell; D.A. Gates; S.M. Kaye; P.H. Lamarche; Benoit P. Leblanc; J. Menard; D. Mueller; H.K. Na; N. Nishino; F. Paoletti; S. Paul; S.A. Sabbagh; Vlad Soukhanovskii; D. Stutman

Boronization of NSTX has allowed access to higher density higher confinement plasmas. A glow discharge with 4 mtorr helium and 10% deuterated trimethyl boron deposited 1.7 g of boron on the plasma facing surfaces. Ion beam analysis of witness coupons showed a B + C areal density of 1018 cm-2 corresponding to a film thickness of 100 nm. Subsequent ohmic discharges showed oxygen emission lines reduced by a factor of 15, carbon emission reduced by a factor of two and copper reduced to undetectable levels. After boronization, the plasma current flat-top time increased by 70% enabling access to higher density higher confinement plasmas.


Nuclear Fusion | 2003

Objectives and design of the JT-60 superconducting tokamak

S. Ishida; K. Abe; Akira Ando; T. Cho; T. Fujii; T. Fujita; Seiichi Goto; K. Hanada; A. Hatayama; Tomoaki Hino; Hiroshi Horiike; N. Hosogane; M. Ichimura; Shunji Tsuji-Iio; S.-I. Itoh; Y. Kamada; Makoto Katsurai; M. Kikuchi; A. Kitsunezaki; A Kohyama; H. Kubo; M. Kuriyama; M. Matsukawa; M. Matsuoka; Y. Miura; N. Miya; T. Mizuuchi; Y. Murakami; K. Nagasaki; H. Ninomiya

A fully superconducting tokamak named JT-60SC is designed for the modification programme of JT-60 to enhance economical and environmental attractiveness in tokamak fusion reactors. JT-60SC aims at realizing high-β steady-state operation in the use of low radio-activation ferritic steel in a low ν* and ρ* regime relevant to the reactor plasmas. Objectives, research issues, plasma control schemes and a conceptual design for JT-60SC are presented.


Nuclear Fusion | 2006

RF start-up and sustainment experiments on the TST-2@K spherical tokamak

A. Ejiri; Y. Takase; Hironori Kasahara; Takuma Yamada; K. Hanada; K.N. Sato; H. Zushi; K. Nakamura; M. Sakamoto; H. Idei; M. Hasegawa; Atsuhiro Iyomasa; N. Imamura; K. Esaki; M. Kitaguchi; K. Sasaki; Hiroyuki Hoshika; Osamu Mitarai; N. Nishino

Plasma start-up and sustainment without an inductive field have been studied in the TST-2@K spherical tokamak using high power RF sources (8.2?GHz/up to 170?kW). Steady state discharges with a plasma current of 4?kA were achieved. The line integrated density was about 3 ? 1017?m?2 and the electron temperature was 160?eV. A truncated equilibrium was introduced to reproduce magnetic measurements. It was found that a positive Pfirsch?Schl?ter current in the open field line region at the outboard boundary makes a significant contribution to the current. Insensitivity of the current to variations in the vertical field and RF power variation was also found.


Physics of Plasmas | 2006

Effect of plasma shaping on performance in the National Spherical Torus Experiment

D.A. Gates; R. Maingi; J. Menard; S.M. Kaye; S.A. Sabbagh; G. Taylor; J. R. Wilson; M.G. Bell; R. E. Bell; S. Bernabei; J. Bialek; T. M. Biewer; W. Blanchard; J.A. Boedo; C.E. Bush; Mark Dwain Carter; Wonho Choe; N.A. Crocker; D. S. Darrow; W. Davis; L. Delgado-Aparicio; S. Diem; J.R. Ferron; A. R. Field; J. Foley; E. D. Fredrickson; R. W. Harvey; Ron Hatcher; W.W. Heidbrink; K. W. Hill

The National Spherical Torus Experiment (NSTX) has explored the effects of shaping on plasma performance as determined by many diverse topics including the stability of global magnetohydrodynamic (MHD) modes (e.g., ideal external kinks and resistive wall modes), edge localized modes (ELMs), bootstrap current drive, divertor flux expansion, and heat transport. Improved shaping capability has been crucial to achieving βt∼40%. Precise plasma shape control has been achieved on NSTX using real-time equilibrium reconstruction. NSTX has simultaneously achieved elongation κ∼2.8 and triangularity δ∼0.8. Ideal MHD theory predicts increased stability at high values of shaping factor S≡q95Ip∕(aBt), which has been observed at large values of the S∼37[MA∕(m∙T)] on NSTX. The behavior of ELMs is observed to depend on plasma shape. A description of the ELM regimes attained as shape is varied will be presented. Increased shaping is predicted to increase the bootstrap fraction at fixed Ip. The achievement of strong shaping ...


Nuclear Fusion | 2005

Experimental studies of the dynamics of compact toroid injected into the JFT-2M tokamak

M. Nagata; H. Ogawa; S. Yatsu; N. Fukumoto; H. Kawashima; K. Tsuzuki; N. Nishino; Tadao Uyama; Y. Kashiwa; Takemasa Shibata; Y. Kusama

We present the first results from recent compact toroid (CT) injection experiments in the JFT-2M tokamak using the improved CT injector and diagnostics with fast time resolution. We have observed that the core line density increases rapidly at a maximum rate of ~1.3 × 1022 m−3 s−1 after a delay of 100–200 µs. This increment rate of the core density is about several times larger than that obtained so far. Interferometry measurement along the peripheral line chord of R = 1.1 m in the inboard side indicates that CT plasma reaches a region near the plasma core beyond the separatrix. Time-frequency and space distribution analyses of edge magnetic probe signals show that the magnetic fluctuation induced by the CT has the spectral peak at 250–350 kHz and propagates in the toroidal direction at the Alfven speed of the order of 106 m s−1. These results indicate the excitation of Alfven wave by CT injection. We have observed that the fluctuation level of the ion saturation current in the divertor and the Dα spectral line intensity decrease significantly after CT injection. Corresponding increase in the soft x-ray signals in the core region may suggest that the CT causes a transition to H-mode-like discharges.


Nuclear Fusion | 2012

Statistical features of coherent structures at increasing magnetic field pitch investigated using fast imaging in QUEST

Santanu Banerjee; H. Zushi; N. Nishino; K. Hanada; S.K. Sharma; H. Honma; S. Tashima; T. Inoue; K. Nakamura; H. Idei; M. Hasegawa; A. Fujisawa

Fluctuations in slab plasma produced by electron cyclotron waves in an open magnetic configuration with vertical (Bz) and toroidal (Bt) fields are investigated as a function of Bz/Bt (field pitch) using a high speed visible camera in the spherical tokamak QUEST. Higher order moments (skewness s and kurtosis k) of spatio-temporal fluctuations are investigated. Background fluctuations, generation of coherent convective structures (blobs) and their propagation are analysed at the intensity gradient (Rim) and the source-free (essentially vacuum on the low-field side) regions, respectively. Parabolic relation (k = As2 + C) is observed between s and k on the entire R–Z plane for a wide range of Bz/Bt. Progressive shift from the Gaussian statistics beyond Rim is observed with increasing Bz/Bt. From the moments of the probability density functions, possible location for blob generation is inferred to be Rim. Direct correspondence is observed with the prominence of the blobs and increase in stochastic forces with the increase in field pitch. Distribution of waiting time suggests that the blob generation may be a Poisson process. Accelerated cross field transport is observed for reasonably large-sized blobs.


Plasma Physics and Controlled Fusion | 2003

Recent diagnostic developments on LHD

S. Sudo; Y. Nagayama; B.J. Peterson; K. Kawahata; T. Akiyama; N. Ashikawa; M. Emoto; M. Goto; Y. Hamada; K. Ida; T. Ido; H. Iguchi; S. Inagaki; M. Isobe; T. Kobuchi; A. Komori; Y. Liang; S. Masuzaki; T. Minami; T. Morisaki; S. Morita; S. Muto; Y. Nakamura; H. Nakanishi; M Narushima; K. Narihara; M. Nishiura; A. Nishizawa; S. Ohdachi; M. Osakabe

Standard diagnostics for fundamental plasma parameters and for plasma physics are routinely utilized for daily operation and physics studies in the large helical device (LHD) with high reliability. Diagnostics for steady-state plasma are under intensive development, especially for Te, ne (yttrium–aluminium garnet (YAG) laser Thomson, CO2 laser polarimeter), data acquisition in steady-state and heat-resistant probes. To clarify the plasma properties of the helical structure, two- or three-dimensional diagnostics are being aggressively developed: tangential cameras (fast SX TV, photon counting CCD, Hα TV); tomography (tangential SX CCD, bolometer); imaging (bolometer, ECE, reflectometer). Divertor and edge physics are important key issues for steady-state operation. Diagnostics for neutral flux (Hα array, Zeeman spectroscopy) and ne (fast scanning probe, Li beam probe, pulsed radar reflectometer) are also in advanced stages of development. In addition to these, advanced diagnostics are being intensively developed in LHD through domestic and international collaborations.

Collaboration


Dive into the N. Nishino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge