N. Prakash Prabhu
University of Hyderabad
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. Prakash Prabhu.
Journal of Physical Chemistry B | 2011
K. Tejaswi Naidu; N. Prakash Prabhu
Protein-surfactant interaction is widely studied to understand stability and structural changes in proteins. In this Article, we have investigated SDS-induced unfolding of RNase A using absorbance, intrinsic fluorescence of the protein, anisotropy, TNS fluorescence, and near- and far-UV circular dichroism. Unfolding titration curves obtained from the absorbance and fluorescence changes were fitted into a five-state protein unfolding model by assuming formation of three intermediate states. Free energy changes and m-values of all four transitions between the native and unfolded state were evaluated. The transitions are categorized into two different regions. Region I, up to 0.5 mM of SDS, involves ionic interaction between the protein and SDS where the secondary and tertiary structure of the protein is altered to a less extent. In region II, hydrophobic interaction dominates and has two distinct transitions. The first transition arises from the aggregation of surfactant molecules around the protein hydrophobic sites. In the following transition, the micelles probably expand more, and a few more hydrophobic sites are occupied by the surfactant. In this region, the tertiary contacts are completely broken, and almost 50% of the secondary structure is lost. The aggregation of SDS around the protein starts well below the CMC. These conformational changes can be explained by the necklace and beads model, and the free energy of formation of such a complex for the RNase A-SDS system is found to be 5.2 (±1.0) kcal mol(-1). The probable interaction sites and the mechanism of unfolding have been discussed in detail.
International Journal of Biological Macromolecules | 2015
E. Kiran Kumar; Shamsul Qumar; N. Prakash Prabhu
Understanding surfactants induced changes on protein folding, aggregation, and fibrillation has a lot of implications in their laboratory and industrial applications. The effect of an anionic surfactant, sodium dodecyl sulphate (SDS), on fibrillation of an acidic protein α-lactalbumin (α-LA) at neutral pH condition was investigated. SDS at lower concentrations increased the lag time by nearly two-fold whereas the fibril elongation rate was not significantly altered. At the concentrations above 0.2mM, SDS lengthened the lag time by many-fold (∼60), but fibril elongation was accelerated by 3-6 fold. At the concentrations above 2mM, SDS inhibited α-LA fibrillation and led it to the formation of amorphous aggregates. These results were compared with the effect of SDS on the fibrillation of lysozyme, a basic protein. Though fibril inhibition was observed on both the proteins at the micellar concentrations of SDS, there were differences in the effect on lag time and elongation rate at the lower concentrations of SDS. This suggests that the inhibition of protein fibrillation by SDS-micelles might be a common mechanism irrespective of the surface charges on protein.
International Journal of Biological Macromolecules | 2017
E. Kiran Kumar; Neshatul Haque; N. Prakash Prabhu
Amyloid fibril formation is a self-assembly reaction induced by favourable conformational changes of proteins leading to a stable, structurally organized aggregates. The deposition of stable protein fibrils in organs and tissues results in many diseases which are generally referred as amyloidosis. Though different disease conditions originate from sequentially and structurally different proteins, their fibrillar forms share common structural features. In vitro, fibril structure and kinetic pathway are investigated by using spectroscopic (fluorescence, circular dichroism, crystallography and solid state-NMR) and microscopic techniques. The kinetics of fibril formation is analysed using different mechanisms to understand the microscopic processes involved in the fibrillation reaction. This review discusses the assumptions, mechanisms, and limitations of some of the widely applied kinetic equations. Understanding of these equations would help to quantify the effect of the different microscopic process on the overall fibrillation kinetics which could aid in designing appropriate molecules to intervene in the aggregation process at different stages.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2017
E. Kiran Kumar; Deepak Kumar Prasad; N. Prakash Prabhu
Formation of amyloid fibrils is found to be a general tendency of many proteins. Investigating the kinetic mechanisms and structural features of the intermediates and the final fibrillar state is essential to understand their role in amyloid diseases. Lysozyme, a notable model protein for amyloidogenic studies, readily formed fibrils in vitro at neutral pH in the presence of urea. It, however, showed two different kinetic pathways under varying urea concentrations when probed with thioflavin T (ThT) fluorescence. In 2M urea, lysozyme followed a nucleation-dependent fibril formation pathway which was not altered by varying the protein concentration from 2mg/ml to 8mg/ml. In 4M urea, the protein exhibited concentration dependent change in the mechanism. At lower protein concentrations, lysozyme formed fibrils without any detectable nuclei (nucleation-independent polymerization pathway). When the concentration of the protein was increased above 3mg/ml, the protein followed nucleation-dependent polymerization pathway as observed in the case of 2M urea condition. This was further verified using microscopic images of the fibrils. The kinetic parameters such as lag time, elongation rate, and fibrillation half-time, which were derived from ThT fluorescence changes, showed linear dependency against the initial protein concentration suggested that under the nucleation-dependent pathway conditions, the protein followed primary-nucleation mechanism without any significant secondary nucleation events. The results also suggested that the differences in the initial protein conformation might alter the mechanism of fibrillation; however, at the higher protein concentrations lysozyme shifted to nucleation-dependent pathway.
Biochimica et Biophysica Acta | 2016
Neshatul Haque; N. Prakash Prabhu
BACKGROUND Understanding the dynamics of enzymes in organic solvents has wider implications on their industrial applications. Pancreatic lipases, which show activity in their lid open-state, demonstrate enhanced activity in organic solvents at higher temperatures. However, the lid dynamics of pancreatic lipases in non-aqueous environment is yet to be clearly understood. METHODS Dynamics of porcine pancreatic lipase (PPL) in open and closed conformations was followed in ethanol, toluene, and octanol using molecular simulation methods. In silico double mutant D250V and E254L of PPL (PPLmut-Cl) was created and its lid opening dynamics in water and in octanol was analyzed. RESULTS PPL showed increase in solvent accessible surface area and decrease in packing density as the polarity of the surrounded solvent decreased. Breaking the interactions between D250-Y115, and D250-E254 in PPLmut-Cl directed the lid to attain open-state conformation. Major energy barriers during the lid movement in water and in octanol were identified. Also, the trajectories of lid movement were found to be different in these solvents. CONCLUSIONS Only the double mutant at higher temperature showed lid opening movement suggesting the essential role of the three residues in holding the lid in closed conformation. The lid opening dynamics was faster in octanol than water suggesting that non-polar solvents favor open conformation of the lid. GENERAL SIGNIFICANCE This study identifies important interactions between the lid and the residues in domain 1 which possibly keeps the lid in closed conformation. Also, it explains the rearrangements of residue-residue interactions during lid opening movement in water and in octanol.
PLOS ONE | 2012
P. V. Parvati Sai Arun; Ranjith Kumar Bakku; Mranu Subhashini; Pankaj K. Singh; N. Prakash Prabhu; Iwane Suzuki; Jogadhenu S. S. Prakash
CyanoPhyChe is a user friendly database that one can browse through for physico-chemical properties, structure and biochemical pathway information of cyanobacterial proteins. We downloaded all the protein sequences from the cyanobacterial genome database for calculating the physico-chemical properties, such as molecular weight, net charge of protein, isoelectric point, molar extinction coefficient, canonical variable for solubility, grand average hydropathy, aliphatic index, and number of charged residues. Based on the physico-chemical properties, we provide the polarity, structural stability and probability of a protein entering in to an inclusion body (PEPIB). We used the data generated on physico-chemical properties, structure and biochemical pathway information of all cyanobacterial proteins to construct CyanoPhyChe. The data can be used for optimizing methods of expression and characterization of cyanobacterial proteins. Moreover, the ‘Search’ and data export options provided will be useful for proteome analysis. Secondary structure was predicted for all the cyanobacterial proteins using PSIPRED tool and the data generated is made accessible to researchers working on cyanobacteria. In addition, external links are provided to biological databases such as PDB and KEGG for molecular structure and biochemical pathway information, respectively. External links are also provided to different cyanobacterial databases. CyanoPhyChe can be accessed from the following URL: http://bif.uohyd.ac.in/cpc.
Bioinformation | 2012
Potshangbam Angamba Meetei; Pankaj K. Singh; Potshangbam Nongdam; N. Prakash Prabhu; R. S. Rathore; Vaibhav Vindal
The North-East region of India is one of the twelve mega biodiversity region, containing many rare and endangered species. A curated database of medicinal and aromatic plants from the regions called NeMedPlant is developed. The database contains traditional, scientific and medicinal information about plants and their active constituents, obtained from scholarly literature and local sources. The database is cross-linked with major biochemical databases and analytical tools. The integrated database provides resource for investigations into hitherto unexplored medicinal plants and serves to speed up the discovery of natural productsbased drugs. Availability The database is available for free at http://bif.uohyd.ac.in/nemedplant/orhttp://202.41.85.11/nemedplant/
BMC Research Notes | 2018
Bharadwaja Vadloori; A. K. Sharath; N. Prakash Prabhu; Radheshyam Maurya
ObjectivePresent in silico study was carried out to explore the mode of inhibition of Leishmania donovani dihydrofolate reductase-thymidylate synthase (Ld DHFR-TS) enzyme by Withaferin-A, a withanolide isolated from Withania somnifera. Withaferin-A (WA) is known for its profound multifaceted properties, but its antileishmanial activity is not well understood. The parasite’s DHFR-TS enzyme is diverse from its mammalian host and could be a potential drug target in parasites.ResultsA 3D model of Ld DHFR-TS enzyme was built and verified using Ramachandran plot and SAVES tools. The protein was docked with WA-the ligand, methotrexate (MTX)-competitive inhibitor of DHFR, and dihydrofolic acid (DHFA)-substrate for DHFR-TS. Molecular docking studies reveal that WA competes for active sites of both Hu DHFR and TS enzymes whereas it binds to a site other than active site in Ld DHFR-TS. Moreover, Lys 173 residue of DHFR-TS forms a H-bond with WA and has higher binding affinity to Ld DHFR-TS than Hu DHFR and Hu TS. The MD simulations confirmed the H-bonding interactions were stable. The binding energies of WA with Ld DHFR-TS were calculated using MM-PBSA. Homology modelling, molecular docking and MD simulations of Ld DHFR-TS revealed that WA could be a potential anti-leishmanial drug.
Biochimica et Biophysica Acta | 2016
Neshatul Haque; N. Prakash Prabhu
BACKGROUND Pancreatic lipases hydrolyze fatty acids in dietary pathway. The activity of porcine pancreatic lipase (PPL) is controlled by lid domain along with a coenzyme, colipase. The active open-state conformation of the protein could be induced by detergents or bile salts which would be further stabilized by binding of colipase. In the absence of these interactions, the lid preferably attains a closed conformation in water. METHODS Molecular dynamic simulation was used to monitor the lid movement of PPL in open and closed conformations in water. Free energy surface was constructed from the simulation. Energy barriers and major structural changes during lid opening were evaluated. RESULTS The lid closure of PPL in water from its open conformation might be initiated by columbic interactions which initially move the lid away from domain 1. This is followed by major dihedral changes on the lid residues which alter the trajectory of motion. The lid then swirls back towards domain 1 to attain closed conformation. This is accompanied with conformational changes around β5- and β9-loops as well. However, PPL in closed conformation shows only the domain movements and the lid remains in its closed conformation. CONCLUSIONS PPL in closed conformation is stable in water and the open conformation is driven towards closed state. The lid follows a swirling trajectory during the closure. GENERAL SIGNIFICANCE Conformational state of the lid regulates the activity and substrate specificity of PPL. Hence, it is essential to understand the lid dynamics and the role of specific amino acid residues involved.
Medicinal Chemistry Research | 2014
Potshangbam Angamba Meetei; Alexander S. Hauser; Prathigadapa S. Raju; R. S. Rathore; N. Prakash Prabhu; Vaibhav Vindal
Methionine amino peptidases (MetAPs) are metalloproteases that remove co-translational N-terminal methionine from nascent polypeptide chains. Due to their essential role in protein synthesis, MetAPs are considered as potential targets for antibacterial drugs. In the present work, three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were carried out on a series of pyridine-2-carboxylic acid thiazol-2-ylamide-based MetAP inhibitors using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques. The models were developed using 30 training set molecules. The optimum CoMFA and CoMSIA models obtained for the training set were statistically significant with cross-validated correlation coefficients (q2) of 0.799 and 0.704 and conventional correlation coefficients (r2) of 0.989 and 0.954, respectively. These inhibitors were docked into MetAP active site. The CoMFA and CoMSIA field contour maps correlate well with the structural characteristics of the binding pocket of MetAP active site. Using the knowledge of structure–activity relationship and receptor–ligand interactions from 3D-QSAR model and the docked complexes, four new pyridine-2-carboxylic acid thiazol-2-ylamide analogs were designed. These analogs exhibit significantly better predicted activity than the reported molecules. The present work has implications for the development of novel antibiotics as potent MetAP inhibitors.