Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pankaj K. Singh is active.

Publication


Featured researches published by Pankaj K. Singh.


International Immunopharmacology | 2013

Tubastatin, a selective histone deacetylase 6 inhibitor shows anti-inflammatory and anti-rheumatic effects.

Santosh Vishwakarma; Lakshmi R. Iyer; Milind Muley; Pankaj K. Singh; Arun Shastry; Ambrish Saxena; Jayanarayan Kulathingal; G. Vijaykanth; J. Raghul; Navin Rajesh; Suresh Rathinasamy; Virendra Kachhadia; Narasimhan Kilambi; Sridharan Rajgopal; Gopalan Balasubramanian; Shridhar Narayanan

Epigenetic modifications represent a promising new approach to modulate cell functions as observed in autoimmune diseases. Emerging evidence suggests the utility of HDAC inhibitors in the treatment of chronic immune and inflammatory disorders. However, class and isoform selective inhibition of HDAC is currently favored as it limits the toxicity that has been observed with pan-HDAC inhibitors. HDAC6, a member of the HDAC family, whose major substrate is α-tubulin, is being increasingly implicated in the pathogenesis of inflammatory disorders. The present study was carried out to study the potential anti-inflammatory and anti-rheumatic effects of HDAC6 selective inhibitor Tubastatin. Tubastatin, a potent human HDAC6 inhibitor with an IC50 of 11 nM showed significant inhibition of TNF-α and IL-6 in LPS stimulated human THP-1 macrophages with an IC50 of 272 nM and 712 nM respectively. Additionally, Tubastatin inhibited nitric oxide (NO) secretion in murine Raw 264.7 macrophages dose dependently with an IC50 of 4.2 μM and induced α-tubulin hyperacetylation corresponding to HDAC6 inhibition in THP-1 cells without affecting the cell viability. Tubastatin showed significant inhibition of paw volume at 30 mg/kg i.p. in a Freunds complete adjuvant (FCA) induced animal model of inflammation. The disease modifying activity of Tubastatin was also evident in collagen induced arthritis DBA1 mouse model at 30 mg/kg i.p. The significant attenuation of clinical scores (~70%) by Tubastatin was confirmed histopathologically and was found comparable to dexamethasone (~90% inhibition of clinical scores). Tubastatin showed significant inhibition of IL-6 in paw tissues of arthritic mice. The present work has demonstrated anti-inflammatory and antirheumatic effects of a selective HDAC6 inhibitor Tubastatin.


Radiation Research | 2012

α-Tocopherol Succinate Protects Mice against Radiation-Induced Gastrointestinal Injury

Pankaj K. Singh; Stephen Y. Wise; Elizabeth J. Ducey; Oluseyi O. Fatanmi; Thomas B. Elliott; Vijay K. Singh

The purpose of this study was to elucidate the role of α-tocopherol succinate (α-TS) in protecting mice from gastrointestinal syndrome induced by total-body irradiation. CD2F1 mice were injected subcutaneously with 400 mg/kg of α-TS and exposed to different doses of 60Co γ radiation, and 30-day survival was monitored. Jejunum sections were analyzed for crypts and villi, PUMA (p53 upregulated modulator of apoptosis), and apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labeling – TUNEL). The crypt regeneration in irradiated mice was evaluated by 5-bromo-2-deoxyuridine (BrdU). Bacterial translocation from gut to heart, spleen and liver in α-TS-treated and irradiated mice was evaluated by bacterial culture on sheep blood agar, colistin-nalidixic acid, and xylose-lysine-desoxycholate medium. Our results demonstrate that α-TS enhanced survival in a significant number of mice irradiated with 9.5, 10, 11 and 11.5 Gy 60Co γ radiation when administered 24 h before radiation exposure. α-TS also protected the intestinal tissue of irradiated mice in terms of crypt and villus number, villus length and mitotic figures. TS treatment decreased the number of TUNEL- and PUMA-positive cells and increased the number of BrdU-positive cells in jejunum compared to vehicle-treated mice. Further, α-TS inhibited gut bacterial translocation to the heart, spleen and liver in irradiated mice. Our data suggest that α-TS protects mice from radiation-induced gastrointestinal damage by inhibiting apoptosis, promoting regeneration of crypt cells, and inhibiting translocation of gut bacteria.


Cytokine | 2012

Role of radiation-induced granulocyte colony-stimulating factor in recovery from whole body gamma-irradiation

Vijay K. Singh; Oluseyi O. Fatanmi; Pankaj K. Singh; Mark H. Whitnall

The purpose of this study was to further elucidate the radioprotective role of granulocyte colony-stimulating factor (G-CSF) induced in response to irradiation. The induction of G-CSF and interleukin-6 (IL-6) in response to radiation exposure was evaluated in mice. The level of cytokine in serum was determined by multiplex Luminex. The role of G-CSF on survival and tissue injury after total body gamma-irradiation was evaluated by administration of neutralizing antibody to G-CSF before radiation exposure. An isotype control was used for comparison and survival was monitored for 30 d after irradiation. Jejunum samples were used for immunohistochemistry. Ionizing radiation exposure induced significant levels of the hematopoietic cytokines G-CSF and IL-6, in mice receiving 9.2 Gy radiation. Maximal levels of G-CSF were observed in peripheral blood of mice 8h after irradiation. IL-6 levels were maximum at 12h after irradiation. Administration of G-CSF antibody significantly enhanced mortality in irradiated mice. G-CSF antibody-treated mice had higher numbers of CD68(+) cells and apoptotic cells in intestinal villi. Our results confirm that radiation exposure induces elevations of circulating G-CSF and IL-6. Neutralizing antibody to G-CSF exacerbates the deleterious effects of radiation, indicating that G-CSF induced in response to irradiation plays an important role in recovery.


Cytokine | 2013

Granulocyte colony-stimulating factor antibody abrogates radioprotective efficacy of gamma-tocotrienol, a promising radiation countermeasure

Shilpa Kulkarni; Pankaj K. Singh; Sanchita P. Ghosh; Ana Posarac; Vijay K. Singh

This study aimed to determine the role of granulocyte colony-stimulating factor (G-CSF), induced by a promising radiation countermeasure, gamma tocotrienol (GT3), in protecting mice from lethal doses of ionizing radiation. CD2F1 mice were injected with an optimal dose of GT3 and a G-CSF antibody, and their 30-d survival was monitored. An appropriate antibody isotype was used as a control. Multiplex Luminex was used to analyze GT3-induced cytokines. G-CSF neutralization by exogenous administration of a G-CSF antibody was confirmed by analyzing serum cytokine levels. Our results demonstrate that GT3 significantly protected mice against ionizing radiation, and induced high levels of G-CSF in peripheral blood 24h after administration. Injection of a G-CSF neutralizing antibody to the GT3-treated mice resulted in complete neutralization of G-CSF and abrogation of its protective efficacy. Administration of a G-CSF antibody did not affect levels of other cytokines induced by GT3. Histopathology of bone marrow from GT3-treated and -irradiated mice demonstrated protection of the hematopoietic tissue, and also that such protection was abrogated by administering a G-CSF antibody. Our results suggest that induction of high levels of G-CSF by GT3 administration is responsible for its protective efficacy against radiation injury.


Radiation Research | 2012

CBLB613: A TLR 2/6 agonist, natural lipopeptide of mycoplasma arginini, as a novel radiation countermeasure

Vijay K. Singh; Elizabeth J. Ducey; Oluseyi O. Fatanmi; Pankaj K. Singh; Darren S. Brown; Andrei Purmal; Vera V. Shakhova; Andrei V. Gudkov; Elena Feinstein; Alexander N. Shakhov

To date, there are no safe and effective drugs available for protection against ionizing radiation damage. Therefore, a great need exists to identify and develop non-toxic agents that will be useful as radioprotectors or postirradiation therapies under a variety of operational scenarios. We have developed a new pharmacological agent, CBLB613 (a naturally occurring Mycoplasma-derived lipopeptide ligand for Toll-like receptor 2/6), as a novel radiation countermeasure. Using CD2F1 mice, we investigated CBLB613 for toxicity, immunogenicity, radioprotection, radiomitigation and pharmacokinetics. We also evaluated CBLB613 for its effects on cytokine induction and radiation-induced cytopenia in unirradiated and irradiated mice. The no-observable-adverse-effect level of CBLB613 was 1.79 mg/kg and 1 mg/kg for single and repeated doses, respectively. CBLB613 significantly protected mice against a lethal dose of 60Co γ radiation. The dose reduction factor of CBLB613 as a radioprotector was 1.25. CBLB613 also mitigated the effects of 60Co γ radiation on survival in mice. In both irradiated and unirradiated mice, the drug stimulated induction of interleukin-1β (IL-1β), IL-6, IL-10, IL-12, keratinocyte-derived chemokine, granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor-1α. CBLB613 also reduced radiation-induced cytopenia and increased bone marrow cellularity in irradiated mice. Our immunogenicity study demonstrated that CBLB613 is not immunogenic in mice, indicating that it could be developed as a radioprotector and radiomitigator for humans against the potentially lethal effects of radiation exposure.


Cytokine | 2011

Radioprotective efficacy of tocopherol succinate is mediated through granulocyte-colony stimulating factor.

Pankaj K. Singh; Stephen Y. Wise; Elizabeth J. Ducey; Darren S. Brown; Vijay K. Singh

The purpose of this study was to elucidate the role of granulocyte colony-stimulating factor (G-CSF) induced by α-tocopherol succinate (TS) in protecting mice from total-body irradiation. CD2F1 mice were injected with a radioprotective dose of TS and the levels of cytokine in serum induced by TS were determined by multiplex Luminex. Neutralization of G-CSF was accomplished by administration of a G-CSF antibody and confirmed by cytokine analysis. The role of G-CSF on gastrointestinal tissue protection afforded by TS after irradiation (11 Gy, 0.6 Gy/min of 60Co γ-radiation) was determined by analysis of jejunum histopathology for crypt, villi, mitotic figures, apoptosis, and cell proliferation. Our results demonstrate that TS protected mice against high doses of radiation-induced gastrointestinal damage and TS also induced very high levels of G-CSF and keratinocyte-derived chemokine (KC) production in peripheral blood 24 h after subcutaneous administration. When TS-injected mice were administered a neutralizing antibody to G-CSF, there was complete neutralization of G-CSF in circulating blood, and the protective effect of TS was significantly abrogated by G-CSF antibody. Histopathology of jejunum from TS-injected and irradiated mice demonstrated protection of gastrointestinal tissue, yet the protection was abrogated by administration of a G-CSF antibody. In conclusion, our current study suggests that induction of G-CSF resulting from TS administration is responsible for protection from 60Co γ-radiation injury.


Journal of Radiation Research | 2013

Radioprotective properties of tocopherol succinate against ionizing radiation in mice

Vijay K. Singh; Pankaj K. Singh; Stephen Y. Wise; Ana Posarac; Oluseyi O. Fatanmi

Threats of nuclear and other radiologic exposures have been increasing but no countermeasure for acute radiation syndrome has been approved by regulatory authorities. In prior publications we have demonstrated the efficacy of tocopherol succinate (TS) as a promising radiation countermeasure with the potential to protect against lethal doses of ionizing radiation exposure. The aim of this study was to gain further insight regarding how TS protects mice against a lethal dose of radiation. CD2F1 mice were injected subcutaneously with 400 mg/kg of TS, and 24 h later exposed to 60Co γ–radiation. Intestinal tissues or spleen/thymus were harvested after irradiation and analyzed for CD68-positive inflammatory cells and apoptotic cells by immunostaining of jejunal cross-sections. Comet assay was used to analyze DNA damage in various tissues. Phospho-histone H3(pH3) and the proliferating cell nuclear antigen (PCNA) were used as mitotic markers for immunostaining jejunal cross-sections. We observed that injecting TS significantly decreased the number of CD68-positive cells, DNA damage and apoptotic cells (BAX, caspase 3 and cleaved poly(ADP-ribose) polymerase-positive cells) as judged by various apoptotic pathway markers. TS treatment also increased proliferating cells in irradiated mice. Results of this study further support our contention that TS protects mice against lethal doses of ionizing radiation by inhibiting radiation-induced apoptosis and DNA damage while enhancing cell proliferation.


International Immunopharmacology | 2011

Mobilized progenitor cells as a bridging therapy for radiation casualties: A brief review of tocopherol succinate-based approaches

Vijay K. Singh; Pankaj K. Singh; Stephen Y. Wise; Thomas M. Seed

Nuclear detonation through either military or terrorist action would most likely lead to a mass-casualty scenario involving victims with varying degrees of exposure to ionizing radiation. As a result of radiation injury to the hematopoietic system, victims would suffer from a lack of red blood cells that deliver oxygen, immune cells that detect and eliminate infectious agents, and blood platelets that promote blood clot formation. In part, these symptoms are generally referred to as acute radiation syndrome (ARS). While some victims of moderate to high levels of radiation will be beyond saving, most will have received enough radiation to injure but not kill their bone marrow cells completely. Such people will recover from their injuries but face a 30-60day period during which they cannot fully fight infections and are prone to uncontrolled bleeding and anemia. To keep them alive until their hematopoietic system recovers, they must receive supportive care. Recently, using experimental animal models of ARS, transfusion of myeloid progenitor cells have been tried as a bridging therapy for radiation-exposed animals. Such cells have been shown to be effective in protecting animals exposed to lethal doses of radiation. These myeloid progenitors (along with of other hematopoietic progenitor cell types) can be mobilized out of the bone marrow into the blood for the reconstitution of hematopoiesis. This review discusses various approaches to the mobilization of progenitors using different mobilizing agents, and their utility as a bridging therapy for radiation casualties. We suggest that α-tocopherol succinate (TS) is an optimal mobilizing agent for progenitors. The extent of progenitor mobilization TS elicits in experimental mice is comparable to clinically used drugs such as recombinant granulocyte-colony stimulating factor rhG-CSF/Neupogen® and the bicyclam AMD3100 (plerixafor/Mozobil); therefore, we propose that TS be considered for further translational development and, ultimately for use in humans.


International Journal of Radiation Biology | 2013

Alpha-tocopherol succinate-mobilized progenitors improve intestinal integrity after whole body irradiation

Vijay K. Singh; Stephen Y. Wise; Pankaj K. Singh; Ana Posarac; Oluseyi O. Fatanmi; Elizabeth J. Ducey; David L. Bolduc; Thomas B. Elliott; Thomas M. Seed

Abstract Purpose: The objective of this study was to elucidate the action of α-tocopherol succinate (TS)- and AMD3100-mobilized progenitors in mitigating radiation-induced injuries. Material and methods: CD2F1 mice were exposed to a high dose of radiation and then transfused intravenously with 5 million peripheral blood mononuclear cells (PBMC) from TS- and AMD3100-injected mice after irradiation. Intestinal and splenic tissues were harvested after irradiation and cells of those tissues were analyzed for markers of apoptosis and mitosis. Bacterial translocation from gut to heart, spleen, and liver in TS-treated and irradiated mice was evaluated by bacterial culture. Results: We observed that the infusion of PBMC from TS- and AMD3100-injected mice significantly inhibited apoptosis, increased cell proliferation in the analyzed tissues of recipient mice, and inhibited bacterial translocation to various organs compared to mice receiving cells from vehicle-mobilized cells. This study further supports our contention that the infusion of TS-mobilized progenitor-containing PBMC acts as a bridging therapy by inhibiting radiation-induced apoptosis, enhancing cell proliferation, and inhibiting bacterial translocation in irradiated mice. Conclusions: We suggest that this novel bridging therapeutic approach that involves the infusion of TS-mobilized hematopoietic progenitors following acute radiation injury might be applicable to humans as well.


Experimental Hematology | 2012

α-Tocopherol succinate- and AMD3100-mobilized progenitors mitigate radiation-induced gastrointestinal injury in mice.

Vijay K. Singh; Stephen Y. Wise; Pankaj K. Singh; Elizabeth J. Ducey; Oluseyi O. Fatanmi; Thomas M. Seed

The goal of this study was to elucidate the role of α-tocopherol succinate (TS)- and AMD3100-mobilized progenitors in mitigating the ionizing-radiation-induced gastrointestinal syndrome in mice. We demonstrate the efficacy of a bridging therapy that will allow the lymphohematopoietic system of severely immunocompromised victims exposed to ionizing radiation to recover from high doses of radiation. CD2F1 mice were irradiated with a high dose of radiation causing gastrointestinal syndrome (11 Gy, cobalt-60 γ-radiation) and then transfused intravenously (retro-orbital sinus) with whole blood or peripheral blood mononuclear cells (PBMC) from TS- and AMD3100-injected mice 2, 24, or 48 hours post irradiation and monitored for 30-day survival. Jejunum sections were analyzed for tissue area, surviving crypts, villi, mitotic figures, and basal lamina enterocytes. Our results demonstrate that infusion of whole blood or PBMC from TS- and AMD3100-injected mice significantly improved survival of mice receiving a high dose of radiation. Histopathology and immunostaining of jejunum from irradiated and TS- and AMD3100-mobilized PBMC-transfused mice reveal significant protection of gastrointestinal tissue from radiation injury. We demonstrate that TS and AMD3100 mobilize progenitors into peripheral circulation and that the infusion of mobilized progenitor-containing blood or PBMC acts as a bridging therapy for immune-system recovery in mice exposed to high, potentially fatal, doses of ionizing radiation.

Collaboration


Dive into the Pankaj K. Singh's collaboration.

Top Co-Authors

Avatar

Vijay K. Singh

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Oluseyi O. Fatanmi

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Stephen Y. Wise

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Elizabeth J. Ducey

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Thomas M. Seed

Armed Forces Radiobiology Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ana Posarac

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Darren S. Brown

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Thomas B. Elliott

Armed Forces Radiobiology Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrei Purmal

Roswell Park Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge