N. R. Jagannathan
All India Institute of Medical Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. R. Jagannathan.
ACS Applied Materials & Interfaces | 2011
Abhalaxmi Singh; Fahima Dilnawaz; Sujeet Mewar; Uma Sharma; N. R. Jagannathan; Sanjeeb K. Sahoo
Exercising complementary roles of polymer-coated magnetic nanoparticles for precise drug delivery and image contrast agents has attracted significant attention in biomedical applications. The objective of this study was to prepare and characterize magnetic nanoparticles embedded in polylactide-co-glycolide matrixes (PLGA-MNPs) as a dual drug delivery and imaging system capable of encapsulating both hydrophilic and hydrophobic drugs. PLGA-MNPs were capable of encapsulating both hydrophobic and hydrophilic drugs in a 2:1 ratio. Biocompatibility, cellular uptake, cytotoxicity, membrane potential, and apoptosis were carried out in two different cancer cell lines (MCF-7 and PANC-1). The molecular basis of induction of apoptosis was validated by Western blotting analysis. For targeted delivery of drugs, targeting ligand such as Herceptin was used, and such a conjugated system demonstrated enhanced cellular uptake and an augmented synergistic effect in an in vitro system when compared with native drugs. Magnetic resonance imaging was carried out both in vitro and in vivo to assess the efficacy of PLGA-MNPs as contrast agents. PLGA-MNPs showed a better contrast effect than commercial contrast agents due to higher T(2) relaxivity with a blood circulation half-life ∼ 47 min in the rat model. Thus, our results demonstrated the dual usable purpose of formulated PLGA-MNPs toward either, in therapeutics by delivering different hydrophobic or hydrophilic drugs individually or in combination and imaging for cancer therapeutics in the near future.
Magnetic Resonance Imaging | 2003
Uma Sharma; Surinder Atri; M. C. Sharma; Chitra Sarkar; N. R. Jagannathan
The metabolic differences in the skeletal muscle of patients with Duchenne muscular dystrophy (DMD) and normal subjects (controls) were investigated using in-vitro high-resolution proton NMR spectroscopy. In all, 56 metabolites were unambiguously identified in the perchloric acid extract of muscle tissue using one- and two-dimensional NMR. The concentrations of glycolytic substrate glucose (Glc; p < 0.05), gluconeogenic amino acids such as glutamine (Gln; p < 0.05) and alanine (Ala; p < 0.05) and the glycolytic product lactate (Lac; p < 0.05) were statistically significantly lower in DMD patients as compared to controls. A significant reduction in the concentrations of total creatine (TCr; p < 0.05), glycerophosphoryl choline + phosphoryl choline + carnitine (GPC/PC/Car; p < 0.05), choline (Cho; p < 0.05) and acetate (Ace; p < 0.05) was also observed in these patients. Decrease in the level of glucose may be attributed to the reduction in the concentrations of gluconeogenic substrates or membrane abnormalities in degenerated muscle of DMD patients. Lower levels of choline containing compounds indicate membrane abnormalities. Decrease in the concentration of lactate in the muscle of DMD patients may be due to the reduction in anaerobic glycolytic activity or lower substrate concentration. The decrease in the concentration of acetate may reflect reduced transport of fatty acids into mitochondria due to decreased concentration of carnitine in DMD patients. Krebs cycle intermediate alpha-ketoglutarate was observed only in the diseased muscle, which is suggestive of predominant oxidative metabolism for energy generation.
Biomaterials | 2012
Fahima Dilnawaz; Abhalaxmi Singh; Sujeet Mewar; Uma Sharma; N. R. Jagannathan; Sanjeeb K. Sahoo
There is much interest in utilizing the intrinsic properties of magnetic nanoparticles (MNPs) for the theranostic approaches in medicine. With an aim to develop a potential therapeutics for glioma treatment, efficacy of aqueous dispersible paclitaxel loaded MNPs (Pac-MNPs) were studied in glioblastoma cell line (U-87). The identified potential receptor, glycoprotein non-metastatic melanoma protein B (GPNMB) overexpressed by glioblastoma cells, was actively targeted using GPNMB conjugated Pac-MNPs in U-87 cells. As blood brain barrier (BBB) is the primary impediment in the treatment of glioblastoma, therefore, an attempt was taken to evaluate the biodistribution and brain uptake of Pac-MNPs in rats. The bioavailability of Pac-MNPs illustrated a prolonged blood circulation in vivo, which demonstrated the presence of significant amounts of drug in rat brain tissues as compared to native paclitaxel. Further, the transmission electron microscopy (TEM) study revealed significant accumulation of the Pac-MNPs in the brain tissues. Being an effective contrast enhancement agent for magnetic resonance imaging (MRI) at tissue levels, the MNPs devoid of any surfactant demonstrated enhanced contrast effect in liver and brain imaging. Hence, the significant prevalence of drugs in the rat brain tissues, in vitro targeting potentiality as well as the augmented contrast effect elicit the non-invasive assessment and theranostic applications of MNPs for brain tumor therapy.
Behavioural Brain Research | 2011
Anjali Chauhan; Uma Sharma; N. R. Jagannathan; K.H. Reeta; Yogendra Kumar Gupta
Stroke is a major cause of mortality and disability. The management with thrombolytic therapy has to be initiated within 3-4 h and is associated with limitations like increased risk of intracranial hemorrhage and progression of cerebral injury. Immunophilin inhibitors such as cyclosporine A and tacrolimus have been shown to afford neuroprotection by improving neurological functions and infarct volume in models of ischemic stroke. In the present study, the effect of rapamycin in middle cerebral artery occlusion (MCAo) model of ischemic stroke was evaluated. Ischemic stroke was induced in rats by occluding the MCA using the intraluminal thread. After 1 h of MCAo, animals were administered rapamycin (50, 150, 250 μg/kg, i.p.). After 2 h of occlusion, reperfusion was done. Thirty minutes after reperfusion, animals were subjected to diffusion-weighted magnetic resonance imaging for assessment of protective effect of rapamycin. Twenty-four hours after MCAo, motor performance was assessed, the animals were euthanized and the brains were removed for estimation of malondialdehyde, glutathione, nitric oxide and myeloperoxidase. Significant improvement was observed with rapamycin 150 and 250 μg/kg in percent infarct area, apparent diffusion coefficient and signal intensity as compared to vehicle treated group. Rapamycin treatment ameliorated motor impairment associated with MCAo and significantly reversed the changes in levels of malondialdehyde, glutathione, nitric oxide and myeloperoxidase. The results of the present study indicate neuroprotective effect of rapamycin in MCAo model of stroke. Therefore, rapamycin might be considered as a therapeutic strategy for stroke management.
BMC Complementary and Alternative Medicine | 2008
Puja Garg; Uma Sharma; N. R. Jagannathan; Madhur Ray
BackgroundAmong the naturally occurring compounds, turmeric from the dried rhizome of the plant Curcuma longa has long been used extensively as a condiment and a household remedy all over Southeast Asia. Turmeric contains essential oil, yellow pigments (curcuminoids), starch and oleoresin. The present study was designed for investigating the neuroprotective efficacy and the time window for effective therapeutic use of Curcuma oil (C. oil).MethodIn the present study, the effect of post ischemic treatment of C.oil after ischemia induced by occlusion of the middle cerebral artery in the rat was observed. C.oil (500 mg/kg body wt) was given 4 hrs post ischemia. The significant effect on lesion size as visualized by using diffusion-weighted magnetic resonance imaging and neuroscore was still evident when treatment was started 4 hours after insult. Animals were assessed for behavioral deficit scores after 5 and 24 hours of ischemia. Subsequently, the rats were sacrificed for evaluation of infarct and edema volumes and other parameters.ResultsC.oil ameliorated the ischemia induced neurological functional deficits and the infarct and edema volumes measured after 5 and 24 hrs of ischemia. After 24 hrs, immunohistochemical and Western blot analysis demonstrated that the expression of iNOS, cytochrome c and Bax/Bcl-2 were altered after the insult, and antagonized by treatment with C.oil. C.oil significantly reduced nitrosative stress, tended to correct the decreased mitochondrial membrane potential, and also affected caspase-3 activation finally apoptosis.ConclusionHere we demonstrated that iNOS-derived NO produced during ischemic injury was crucial for the up-regulation of ischemic injury targets. C.oil down-regulates these targets this coincided with an increased survival rate of neurons.
Clinical Endocrinology | 2010
Rajat Gupta; Uma Sharma; Nandita Gupta; Mani Kalaivani; Upinderpal Singh; Randeep Guleria; N. R. Jagannathan; Ravinder Goswami
Context Vitamin D deficiency is prevalent worldwide. Vitamin D supplementation has shown variable effect on skeletal muscle strength in the elderly with hypovitaminosis D. There is a paucity of similar data in young individuals.
International Journal of Nanomedicine | 2012
Manoj Kumar; Gurpal Singh; Vikas Arora; Sujeet Mewar; Uma Sharma; N. R. Jagannathan; Sameer Sapra; Amit K. Dinda; Surender Kharbanda; Harpal Singh
The purpose of the study was to develop tumor specific, water dispersible superparamagnetic iron oxide nanoparticles (SPIONs) and evaluate their efficacy as a contrast agent in magnetic resonance imaging (MRI). We have developed SPIONs capped with citric acid/2-bromo-2-methylpropionic acid which are compact, water dispersible, biocompatible having narrow range of size dispersity (8–10 nm), and relatively high T2 relaxivity (R2 = 222L · mmol−1 · sec−l). The targeting efficacy of unconjugated and folic acid-conjugated SPIONs (FA-SPIONS) was evaluated in a folic acid receptor overexpressing and negative tumor cell lines. Folic acid receptor-positive cells incubated with FA-SPIONs showed much higher intracellular iron content without any cytotoxicity. Ultrastructurally, SPIONs were seen as clustered inside the various stages of endocytic pathways without damaging cellular organelles and possible mechanism for their entry is via receptor mediated endocytosis. In vitro MRI studies on tumor cells showed better T2-weighted images in FA-SPIONs. These findings indicate that FA-SPIONs possess high colloidal stability with excellent sensitivity of imaging and can be a useful MRI contrast agent for the detection of cancer.
Magnetic Resonance Imaging | 2003
R. Handa; P. Sahota; Mahesh Kumar; N. R. Jagannathan; C.S. Bal; M. Gulati; B.M. Tripathi; J.P. Wali
Neuropsychiatric involvement in SLE (NP-SLE) may not be picked up by routine neuroimaging procedures like computerized tomography (CT) or magnetic resonance imaging (MRI). We prospectively studied the role of single photon emission computerized tomography (SPECT) and magnetic resonance spectroscopy (MRS) in detection of NP-SLE in 20 patients with lupus (10 with clinical NP involvement and 10 without) and 9 healthy controls. MRI abnormalities were seen in 5/10 patients with NP-SLE while the MRI was normal in all the lupus patients without clinical NP involvement. Perfusion defects on SPECT were seen in as many as 8/10 patients with NP-SLE while only 1/10 lupus patients without clinical NP involvement and none of the healthy controls demonstrated perfusion defects. MRS revealed abnormal metabolite ratios in all patients with NP-SLE and as many as 8 lupus patients without clinical NP features. Normal metabolite ratios were observed in healthy controls. SPECT and MRS can help detect changes not evident on MRI and may serve as useful supplements to existing neuroimaging techniques in the diagnosis of NP-SLE. The precise significance of alterations in regional cerebral blood flow on SPECT and neurometabolite ratios on MRS needs larger, longitudinal studies.
Journal of Materials Chemistry | 2011
Sakthivel Gandhi; S Venkatesh; Uma Sharma; N. R. Jagannathan; Swaminathan Sethuraman; Uma Maheswari Krishnan
Mesoporous silica has attracted attention in recent years due to its high surface area, tunable ordered narrow pores and easily modifiable functional groups. In the present work, iron oxide nanoparticles (Fe2O3) were incorporated into the pores and surface of mesoporous SBA–15 (Santa Barbara Amorphous) via a thermal pre-synthesis method. The textural and surface properties were characterized using electron microscopy, X-ray diffraction and nitrogen adsorption–desorption analysis. Due to a reduction in thermal pressure during the synthesis, the textural property of the magnetic silica remained highly ordered. The superparamagnetic property of the synthesized material was confirmed using SQUID–VSM. Cell viability studies were carried out with MC3T3 fibroblast cell lines in the presence and absence of magnetic silica and our results showed no significant change in the cell viability between the concentration range of 31.3 μg mL−1 and 250 μg mL−1. The magnetic resonance properties of the iron oxide doped mesoporous silica was determined using MRI and showed excellent longitudinal (R1) and transverse relaxivities (R2) with an R2/R1 ratio close to 1, indicating the potential of this material as a magnetic contrast agent.
Clinical Endocrinology | 2005
Sanjeev Sinha; Manish Rathi; Anoop Misra; Virendra Kumar; Mahesh Kumar; N. R. Jagannathan; Ravindra Mohan Pandey; Manjari Dwivedi; Kalpana Luthra
Objectives The relationship between C‐reactive protein (CRP), a marker of subclinical inflammation, and intramyocellular lipid (IMCL) content, a novel correlate of insulin resistance, has not previously been investigated.