N.T. Howard
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N.T. Howard.
Nuclear Fusion | 2010
D.G. Whyte; A. Hubbard; J.W. Hughes; B. Lipschultz; J. E. Rice; E. Marmar; M. Greenwald; I. Cziegler; A. Dominguez; T. Golfinopoulos; N.T. Howard; L. Lin; R. M. Mcdermott; M. Porkolab; M.L. Reinke; J. L. Terry; N. Tsujii; Scot A. Wolfe; S.J. Wukitch; Y. Lin
An improved energy confinement regime, I-mode, is studied in Alcator C-Mod, a compact high-field divertor tokamak using ion cyclotron range of frequencies (ICRFs) auxiliary heating. I-mode features an edge energy transport barrier without an accompanying particle barrier, leading to several performance benefits. H-mode energy confinement is obtained without core impurity accumulation, resulting in reduced impurity radiation with a high-Z metal wall and ICRF heating. I-mode has a stationary temperature pedestal with edge localized modes typically absent, while plasma density is controlled using divertor cryopumping. I-mode is a confinement regime that appears distinct from both L-mode and H-mode, combining the most favourable elements of both. The I-mode regime is investigated predominately with ion ∇B drift away from the active X-point. The transition from L-mode to I-mode is primarily identified by the formation of a high temperature edge pedestal, while the edge density profile remains nearly identical to L-mode. Laser blowoff injection shows that I-mode core impurity confinement times are nearly identical with those in L-mode, despite the enhanced energy confinement. In addition, a weakly coherent edge MHD mode is apparent at high frequency ~100–300 kHz which appears to increase particle transport in the edge. The I-mode regime has been obtained over a wide parameter space (BT = 3–6 T, Ip = 0.7–1.3 MA, q95 = 2.5–5). In general, the I-mode exhibits the strongest edge temperature pedestal (Tped) and normalized energy confinement (H98 > 1) at low q95 ( 4 MW). I-mode significantly expands the operational space of edge localized mode (ELM)-free, stationary pedestals in C-Mod to Tped ~ 1 keV and low collisionality , as compared with EDA H-mode with Tped . The I-mode global energy confinement has a relatively weak degradation with heating power; leading to increasing H98 with heating power.
Nuclear Fusion | 2012
N.T. Howard; M. Greenwald; David Mikkelsen; M.L. Reinke; A.E. White; D. Ernst; Y. Podpaly; J. Candy
Nonlinear gyrokinetic simulations of impurity transport are compared to experimental impurity transport for the first time. The GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545) was used to perform global, nonlinear gyrokinetic simulations of impurity transport for a standard Alcator C-Mod, L-mode discharge. The laser blow-off technique was combined with soft x-ray measurements of a single charge state of calcium to provide time-evolving profiles of this non-intrinsic, non-recycling impurity over a radial range of 0.0 ≤ r/a ≤ 0.6. Experimental transport coefficient profiles and their uncertainties were extracted from the measurements using the impurity transport code STRAHL and rigorous Monte Carlo error analysis. To best assess the agreement of gyrokinetic simulations with the experimental profiles, the sensitivity of the GYRO predicted impurity transport to a wide range of turbulence-relevant plasma parameters was investigated. A direct comparison of nonlinear gyrokinetic simulation and experiment is presented with an in depth discussion of error sources and a new data analysis methodology.
Review of Scientific Instruments | 2012
Matthew Reinke; Y. Podpaly; M. Bitter; Ian H. Hutchinson; J. E. Rice; L. Delgado-Aparicio; C. Gao; M. Greenwald; K. W. Hill; N.T. Howard; A. Hubbard; J.W. Hughes; N. Pablant; A.E. White; S. M. Wolfe
This research describes advancements in the spectral analysis and error propagation techniques associated with x-ray imaging crystal spectroscopy (XICS) that have enabled this diagnostic to be used to accurately constrain particle, momentum, and heat transport studies in a tokamak for the first time. Doppler tomography techniques have been extended to include propagation of statistical uncertainty due to photon noise, the effect of non-uniform instrumental broadening as well as flux surface variations in impurity density. These methods have been deployed as a suite of modeling and analysis tools, written in interactive data language (IDL) and designed for general use on tokamaks. Its application to the Alcator C-Mod XICS is discussed, along with novel spectral and spatial calibration techniques. Example ion temperature and radial electric field profiles from recent I-mode plasmas are shown, and the impact of poloidally asymmetric impurity density and natural line broadening is discussed in the context of the planned ITER x-ray crystal spectrometer.
Physics of Plasmas | 2011
A. Hubbard; D.G. Whyte; R.M. Churchill; I. Cziegler; A. Dominguez; T. Golfinopoulos; J.W. Hughes; J. E. Rice; I.O. Bespamyatnov; M. Greenwald; N.T. Howard; B. Lipschultz; E. Marmar; Matthew Reinke; William L. Rowan; J.L. Terry
We report extended studies of the I-mode regime [Whyte et al., Nucl. Fusion 50, 105005 (2010)] obtained in the Alcator C-Mod tokamak [Marmar et al., Fusion Sci. Technol. 51(3), 3261 (2007)]. This regime, usually accessed with unfavorable ion B × ∇B drift, features an edge thermal transport barrier without a strong particle transport barrier. Steady I-modes have now been obtained with favorable B × ∇B drift, by using specific plasma shapes, as well as with unfavorable drift over a wider range of shapes and plasma parameters. With favorable drift, power thresholds are close to the standard scaling for L–H transitions, while with unfavorable drift they are ∼ 1.5–3 times higher, increasing with Ip. Global energy confinement in both drift configurations is comparable to H-mode scalings, while density profiles and impurity confinement are close to those in L-mode. Transport analysis of the edge region shows a decrease in edge χeff, by typically a factor of 3, between L- and I-mode. The decrease correlates with ...
Physics of Plasmas | 2013
A.E. White; N.T. Howard; M. Greenwald; M.L. Reinke; C. Sung; S. G. Baek; M. Barnes; J. Candy; A. Dominguez; D. Ernst; C. Gao; A. Hubbard; J.W. Hughes; Y. Lin; D.R. Mikkelsen; F. Parra; M. Porkolab; J. E. Rice; J. Walk; S.J. Wukitch; Alcator C-Mod Team
Multi-channel transport experiments have been conducted in auxiliary heated (Ion Cyclotron Range of Frequencies) L-mode plasmas at Alcator C-Mod [Marmar and Alcator C-Mod Group, Fusion Sci. Technol. 51(3), 3261 (2007)]. These plasmas provide good diagnostic coverage for measurements of kinetic profiles, impurity transport, and turbulence (electron temperature and density fluctuations). In the experiments, a steady sawtoothing L-mode plasma with 1.2 MW of on-axis RF heating is established and density is scanned by 20%. Measured rotation profiles change from peaked to hollow in shape as density is increased, but electron density and impurity profiles remain peaked. Ion or electron heat fluxes from the two plasmas are the same. The experimental results are compared directly to nonlinear gyrokinetic theory using synthetic diagnostics and the code GYRO [Candy and Waltz, J. Comput. Phys. 186, 545 (2003)]. We find good agreement with experimental ion heat flux, impurity particle transport, and trends in the fluc...
Physics of Plasmas | 2012
J. E. Rice; M. Greenwald; Y. Podpaly; M.L. Reinke; P. H. Diamond; J.W. Hughes; N.T. Howard; Y. Ma; I. Cziegler; B.P. Duval; P. Ennever; D. Ernst; C. Fiore; C. Gao; J. Irby; E. Marmar; M. Porkolab; N. Tsujii; S. M. Wolfe
Ohmic energy confinement saturation is found to be closely related to core toroidal rotation reversals in Alcator C-Mod tokamak plasmas. Rotation reversals occur at a critical density, depending on the plasma current and toroidal magnetic field, which coincides with the density separating the linear Ohmic confinement regime from the saturated Ohmic confinement regime. The rotation is directed co-current at low density and abruptly changes direction to counter-current when the energy confinement saturates as the density is increased. Since there is a bifurcation in the direction of the rotation at this critical density, toroidal rotation reversal is a very sensitive indicator in the determination of the regime change. The reversal and confinement saturation results can be unified, since these processes occur in a particular range of the collisionality.
Plasma Physics and Controlled Fusion | 2012
M.L. Reinke; Ian H. Hutchinson; J. E. Rice; N.T. Howard; A. Bader; S.J. Wukitch; Y. Lin; D. C. Pace; A. Hubbard; J.W. Hughes; Y. Podpaly
In the Alcator C-Mod tokamak, strong, steady-state variations of molybdenum density within a flux surface are routinely observed in plasmas using hydrogen minority ion cyclotron resonant heating. In/out asymmetries, up to a factor of 2, occur with either inboard or outboard accumulation depending on the major radius of the minority resonance layer. These poloidal variations can be attributed to the impuritys high charge and large mass in the neoclassical parallel force balance. The large mass enhances the centrifugal force, causing outboard accumulation while the high charge enhances ion-impurity friction and makes impurities sensitive to small poloidal variations in the plasma potential. Quantitative comparisons between existing parallel high-Z impurity transport theories and experimental results for r/a < 0.7 show good agreement when the resonance layer is on the high-field side of the tokamak but disagree substantially for low-field side heating. Ion-impurity friction is insufficient to explain the experimental results, and the accumulation of impurity density on the inboard side of flux surface is shown to be driven by a poloidal potential variation due to magnetic trapping of non-thermal, cyclotron heated minority ions. Parallel impurity transport theory is extended to account for cyclotron effects and shown to agree with experimentally measured impurity density asymmetries.
Nuclear Fusion | 2012
B. Lipschultz; J. W. Coenen; Harold Barnard; N.T. Howard; M.L. Reinke; D.G. Whyte; G.M. Wright
For the 2007 and 2008 run campaigns, Alcator C-Mod operated with a full toroidal row of tungsten tiles in the high heat flux region of the outer divertor; tungsten levels in the core plasma were below measurement limits. An accidental creation of a tungsten leading edge in the 2009 campaign led to this study of a melting tungsten source: H-mode operation with strike point in the region of the melting tile was immediately impossible due to some fraction of tungsten droplets reaching the main plasma. Approximately 15 g of tungsten was lost from the tile over ~100 discharges. Less than 1% of the evaporated tungsten was found re-deposited on surfaces, the rest is assumed to have become dust. The strong discharge variability of the tungsten reaching the core implies that the melt layer topology is always varying. There is no evidence of healing of the surface with repeated melting. Forces on the melted tungsten tend to lead to prominences that extend further into the plasma. A discussion of the implications of melting a divertor tungsten monoblock on the ITER plasma is presented.
Nuclear Fusion | 2013
J. E. Rice; C. Gao; M.L. Reinke; P. H. Diamond; N.T. Howard; H.J. Sun; I. Cziegler; A. Hubbard; Y. Podpaly; William L. Rowan; J. L. Terry; M. Chilenski; L. Delgado-Aparicio; P. Ennever; D. Ernst; M. Greenwald; J.W. Hughes; Y. Ma; E. Marmar; M. Porkolab; A.E. White; S.M. Wolfe
Several seemingly unrelated effects in Alcator C-Mod ohmic L-mode plasmas are shown to be closely connected: non-local heat transport, core toroidal rotation reversals, energy confinement saturation and up/down impurity density asymmetries. These phenomena all abruptly transform at a critical value of the collisionality. At low densities in the linear ohmic confinement regime, with collisionality ?*???0.35 (evaluated inside of the q?=?3/2 surface), heat transport exhibits non-local behaviour, core toroidal rotation is directed co-current, edge impurity density profiles are up/down symmetric and a turbulent feature in core density fluctuations with k? up to 15?cm?1 (k??s???1) is present. At high density/collisionality with saturated ohmic confinement, electron thermal transport is diffusive, core rotation is in the counter-current direction, edge impurity density profiles are up/down asymmetric and the high k? turbulent feature is absent. The rotation reversal stagnation point (just inside of the q?=?3/2 surface) coincides with the non-local electron temperature profile inversion radius. All of these observations suggest a possible unification in a model with trapped electron mode prevalence at low collisionality and ion temperature gradient mode domination at high collisionality.
Review of Scientific Instruments | 2010
Matthew Reinke; P. Beiersdorfer; N.T. Howard; E. W. Magee; Y. Podpaly; J. E. Rice; J. L. Terry
Vacuum ultraviolet spectroscopy is used on the Alcator C-Mod tokamak to study the physics of impurity transport and provide feedback on impurity levels to assist experimental operations. Sputtering from C-Mods all metal (Mo+W) plasma facing components and ion cyclotron range of frequency antenna and vessel structures (sources for Ti, Fe, Cu, and Ni), the use of boronization for plasma surface conditioning and Ar, Ne, or N(2) gas seeding combine to provide a wealth of spectroscopic data from low-Z to high-Z. Recently, a laser blow-off impurity injector has been added, employing CaF(2) to study core and edge impurity transport. One of the primary tools used to monitor the impurities is a 2.2 m Rowland circle spectrometer utilizing a Reticon array fiber coupled to a microchannel plate. With a 600 lines/mm grating the 80<λ<1050 Å range can be scanned, although only 40-100 Å can be observed for a single discharge. Recently, a flat-field grating spectrometer was installed which utilizes a varied line spacing grating to image the spectrum to a soft x-ray sensitive Princeton Instruments charge-coupled device camera. Using a 2400 lines/mm grating, the 10<λ<70 Å range can be scanned with 5-6 nm observed for a single discharge. A variety of results from recent experiments are shown that highlight the capability to track a wide range of impurities.