N. V. Pogorelov
University of Alabama in Huntsville
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. V. Pogorelov.
Science | 2012
D. J. McComas; D. B. Alexashov; M. Bzowski; H. J. Fahr; J. Heerikhuisen; Vladislav V. Izmodenov; M. A. Lee; Eberhard Mobius; N. V. Pogorelov; N. A. Schwadron; G. P. Zank
No Shock Ahead of the Sun The boundary of the heliosphere is the region where the solar wind interacts with interstellar space, and it marks the edge of our solar system. Based on observations from NASAs Interstellar Boundary Explorer, McComas et al. (p. 1291, published online 10 May; see the Perspective by Redfield) determined values for local interstellar parameters—such as speed, direction, and temperature—and show that these and other recent constraints are not consistent with a bow shock ahead of the heliosphere, as previously believed. Observations from the Interstellar Boundary Explorer are not consistent with a bow shock ahead of the heliosphere. As the Sun moves through the local interstellar medium, its supersonic, ionized solar wind carves out a cavity called the heliosphere. Recent observations from the Interstellar Boundary Explorer (IBEX) spacecraft show that the relative motion of the Sun with respect to the interstellar medium is slower and in a somewhat different direction than previously thought. Here, we provide combined consensus values for this velocity vector and show that they have important implications for the global interstellar interaction. In particular, the velocity is almost certainly slower than the fast magnetosonic speed, with no bow shock forming ahead of the heliosphere, as was widely expected in the past.
The Astrophysical Journal | 2010
J. Heerikhuisen; N. V. Pogorelov; G. P. Zank; Geoffrey Crew; Priscilla C. Frisch; H. O. Funsten; Paul Henry Janzen; D. J. McComas; Daniel B. Reisenfeld; N. A. Schwadron
First data from NASAs Interstellar Boundary EXplorer (IBEX) mission show a striking ribbon feature of enhanced energetic neutral atom (ENA) emission. The enhancement in flux is between 2 and 3 times greater than adjacent regions of the sky. Yet the spectral index of ENAs appears to be the same both inside and outside the ribbon. While the ribbon itself was not predicted by any models of the heliospheric interface, its geometry appears to be related to the predicted interstellar magnetic field (ISMF) outside the heliopause (HP). In this Letter, we examine a process of ENA emission from the outer heliosheath, based on a source population of non-isotropic pick-up ions that themselves originate as ENAs from inside the HP. We find that our simplistic approach yields a ribbon of enhanced ENA fluxes as viewed from the inner heliosphere with a spatial location and ENA flux similar to the IBEX measurements, with the provision that the ions retain a partial shell distribution long enough for the ions to be neutralized. As a corollary, our idealized simulation of this mechanism suggests that ISMF is likely oriented close to the center of the observed ribbon.
The Astrophysical Journal | 2010
G. P. Zank; J. Heerikhuisen; N. V. Pogorelov; R. H. Burrows; D. J. McComas
The Voyager 2 plasma observations of the proton distribution function downstream of the quasi-perpendicular heliospheric termination shock (TS) showed that upstream thermal solar wind ions played little role in the shock dissipation mechanism, being essentially transmitted directly through the shock. Instead, the hot supra-thermal pickup ion (PUI) component is most likely responsible for the dissipation at the TS. Consequently, the downstream proton distribution function will be a complicated superposition of relatively cool thermal solar wind protons and hot PUIs that have experienced either direct transmission or reflection at the TS cross-shock potential. We develop a simple model for the TS microstructure that allows us to construct approximate proton distribution functions for the inner heliosheath. The distribution function models are compared to ?-distributions, showing the correspondence between the two. Since the interpretation of energetic neutral atom (ENA) fluxes measured at 1 AU by IBEX will depend sensitively on the form of the underlying proton distribution function, we use a three-dimensional MHD-kinetic global model to model ENA spectra at 1 AU and ENA skymaps across the IBEX energy range. We consider both solar minimum and solar maximum-like global models, showing how ENA skymap structure can be related to global heliospheric structure. We suggest that the ENA spectra may allow us to probe the directly the microphysics of the TS, while the ENA skymaps reveal heliospheric structure and, at certain energies, are distinctly different during solar minimum and maximum.
The Astrophysical Journal | 2013
G. P. Zank; J. Heerikhuisen; Brian E. Wood; N. V. Pogorelov; E. J. Zirnstein; D. J. McComas
Recent IBEX observations indicate that the local interstellar medium (LISM) flow speed is less than previously thought (23.2xa0kmxa0s–1 rather than 26xa0kmxa0s–1). Reasonable LISM plasma parameters indicate that the LISM flow may be either marginally super-fast magnetosonic or sub-fast magnetosonic. This raises two challenging questions: (1) Can a LISM model that is barely super-fast or sub-fast magnetosonic account for Lyα observations that rely critically on the additional absorption provided by the hydrogen wall (H-wall)? and (2) If the LISM flow is weakly super-fast magnetosonic, does the transition assume the form of a traditional shock or does neutral hydrogen (H) mediate shock dissipation and hence structure through charge exchange? Both questions are addressed using three three-dimensional self-consistently coupled magnetohydrodynamic plasma—kinetic H models with different LISM magnetic field strengths (2, 3, and 4 μG) as well as plasma and neutral H number densities. The 2 and 3 μG models are fast magnetosonic far upwind of the heliopause whereas the 4 μG model is fully subsonic. The 2 μG model admits a broad (~50-75xa0AU) bow-shock-like structure. The 3 μG model has a smooth super-fast-sub-fast magnetosonic transition that resembles a very broad, ~200xa0AU thick, bow wave. A theoretical analysis shows that the transition from a super-fast to a sub-fast magnetosonic downstream state is due to the charge exchange of fast neutral H and hot neutral H created in the supersonic solar wind and hot inner heliosheath, respectively. For both the 2 μG and the 3 μG models, the super-fast magnetosonic LISM flow passes through a critical point located where the fast magnetosonic Mach number M = 1 and Qe = γ/(γ – 1)UQm , where Qe and Qm are the plasma energy and momentum source terms due to charge exchange, U is the LISM flow speed, and γ is the plasma adiabatic index. Because the Mach number is only barely super-fast magnetosonic in the 3 μG case, the hot and fast neutral H can completely mediate the transition and impose a charge exchange length scale on the structure, making the solar-wind-LISM interaction effectively bow-shock-free. The charge exchange of fast and hot heliospheric neutral H therefore provides a primary dissipation mechanism at the weak heliospheric bow shock, in some cases effectively creating a one-shock heliosphere (i.e., a heliospheric termination shock only). Both super-fast magnetosonic models produce a sizeable H-wall. We find that (1) a sub-fast magnetosonic LISM flow cannot model the observed Lyα absorption profiles along the four sightlines considered (α Cen, 36 Oph, DK UMa, and χ1 Ori—upwind, sidewind, and downwind respectively); (2) both the super-fast magnetosonic models can account for the Lyα observations, with possibly the bow-shock-free 3 μG model being slightly favored. Subject to further modeling and comparison against further lines of sight, we conclude with the tantalizing possibility that IBEX may have discovered a class of interstellar shocks mediated by neutral H.
The Astrophysical Journal | 2009
N. V. Pogorelov; Sergey Borovikov; G. P. Zank; Tatsuki Ogino
We investigate the effects of the 11 year solar cycle and 25 day rotation period of the Sun on the interaction of the solar wind (SW) with the local interstellar medium (LISM). Our models take into account the partially ionized character of the LISM and include momentum and energy transfer between the ionized and neutral components. We assume that the interstellar magnetic field vector belongs to the hydrogen deflection plane as discovered in the SOHO SWAN experiment. This plane is inclined at an angle of about 60° toward the ecliptic plane of the Sun, as suggested in recent publications relating the local interstellar cloud properties to the radio emission observed by Voyager 1. It is assumed that the latitudinal extent of the boundary between the slow and fast SW regions, as well as the angle between the Suns rotation and magnetic-dipole axes, are periodic functions of time, while the polarity of the interstellar magnetic field changes sign every 11 years at the solar maximum. The global variation of the SW-LISM interaction pattern, the excursions of the termination shock and the heliopause, and parameter distributions in certain directions are investigated. The analysis of the behavior of the wavy heliospheric current sheet in the supersonic SW region shows the importance of neutral atoms on its dynamics.
Journal of Geophysical Research | 1998
N. V. Pogorelov; Takuya Matsuda
In this paper we study the influence of the angle between the local interstellar medium velocity and magnetic field vectors on the interaction of this medium with the solar wind. Both winds are supposed supersonic. Applicability of the two-shock model of the interaction is discussed. Investigation is performed by numerical solution of the MHD equations for an ideal plasma in the one-fluid approximation.
The Astrophysical Journal | 2011
J. Heerikhuisen; N. V. Pogorelov
The strength and orientation of the magnetic field in the nearby interstellar medium have remained elusive, despite continual improvements in observations and models. Data from NASA’s Voyager mission and the Solar Wind ANisotropies(SWAN)experimentonboardSolarandHeliosphericObservatory(SOHO)haveplacedobservational constraints on the magnetic field, and the more recent Interstellar Boundary Explorer (IBEX) data appear to also bear an imprint of the interstellar magnetic field (ISMF). In this paper, we combine computational models of the heliosphere with data from Voyager, SOHO/SWAN, and IBEX to estimate both the strength and direction of the nearby ISMF. On the basis of our simulations, we find that a field strength of 2‐3 μG pointing from ecliptic coordinates (220‐224, 39‐44), combined with an interstellar hydrogen density of ∼0.15 cm −3 , produces results most consistent with observations.
The Astrophysical Journal | 2013
N. V. Pogorelov; S. T. Suess; Sergey Borovikov; R. W. Ebert; D. J. McComas; G. P. Zank
The solar cycle has a profound influence on the solar wind (SW) interaction with the local interstellar medium (LISM) on more than one timescales. Also, there are substantial differences in individual solar cycle lengths and SW behavior within them. The presence of a slow SW belt, with a variable latitudinal extent changing within each solar cycle from rather small angles to 90 Degree-Sign , separated from the fast wind that originates at coronal holes substantially affects plasma in the inner heliosheath (IHS)-the SW region between the termination shock (TS) and the heliopause (HP). The solar cycle may be the reason why the complicated flow structure is observed in the IHS by Voyager 1. In this paper, we show that a substantial decrease in the SW ram pressure observed by Ulysses between the TS crossings by Voyager 1 and 2 contributes significantly to the difference in the heliocentric distances at which these crossings occurred. The Ulysses spacecraft is the source of valuable information about the three-dimensional and time-dependent properties of the SW. Its unique fast latitudinal scans of the SW regions make it possible to create a solar cycle model based on the spacecraft in situ measurements. On the basis of morexa0» our analysis of the Ulysses data over the entire life of the mission, we generated time-dependent boundary conditions at 10 AU from the Sun and applied our MHD-neutral model to perform a numerical simulation of the SW-LISM interaction. We analyzed the global variations in the interaction pattern, the excursions of the TS and the HP, and the details of the plasma and magnetic field distributions in the IHS. Numerical results are compared with Voyager data as functions of time in the spacecraft frame. We discuss solar cycle effects which may be reasons for the recent decrease in the TS particles (ions accelerated to anomalous cosmic-ray energies) flux observed by Voyager 1. «xa0less
The Astrophysical Journal | 2014
J. Heerikhuisen; E. J. Zirnstein; H. O. Funsten; N. V. Pogorelov; G. P. Zank
We present new results from three-dimensional simulations of the solar wind interaction with the local interstellar medium (LISM) using recent observations by NASAs Interstellar Boundary EXplorer (IBEX) mission estimates of the velocity and temperature of the LISM. We investigate four strengths of the LISM magnetic field, from 1 to 4 μG, and adjust the LISM proton and hydrogen densities so that the distance to the termination shock (TS) in the directions of the Voyager spacecraft is just below 90 AU, and the density of hydrogen at the TS is close to 0.09 cm–3 in the nose direction. The orientation of the magnetic field is chosen to point toward the center of the ribbon of enhanced energetic neutral atom (ENA) flux seen in the IBEX data. Our simulations show that the plasma and neutral properties in the outer heliosheath vary considerably as a function of the LISM magnetic field strength. We also show that the heliotail points downwind in all cases, though its structure is strongly affected by the external magnetic field. Comparison and consistency between the simulated ENA flux and the circularity of the ribbon as measured by IBEX are most consistent with a LISM magnetic field strength aligned with the center of the ribbon and a magnitude in the range 2.5-3 μG.
The Astrophysical Journal | 2009
V. Florinski; N. V. Pogorelov
2008 marked the beginning of sunspot cycle 24 in the inner heliosphere. Intensities of galactic hydrogen and helium measured by the Voyagers in 2008 were the highest ever recorded and believed to be approaching the interstellar values. We investigate transport of galactic cosmic ray (GCR) protons in the three-dimensional, asymmetric heliosphere, including the inner heliosheath region, by tracking stochastic phase-space trajectories of Parker equation under steady plasma background conditions. The latter is calculated from a three-dimensional MHD model of the global heliosphere that takes into account the effect of neutral hydrogen atoms. The model is applied to quiet solar wind (SW) conditions appropriate for the 2008-2009 solar minimum. Model-derived cosmic-ray spectra and radial gradients are reviewed in the context of Voyager observations in the heliosheath. It is shown that the heliosheath is an important modulation barrier for lower energy ions. Radial cosmic-ray gradients in the heliosheath are expected to be small in the directions of the Voyagers (1.5%-1.8% per AU at 180 MeV). In our model the termination shock does not accelerate GCR ions very efficiently, and their intensities in the heliosheath never exceed interstellar values. Analysis of cosmic-ray residence times in different parts in the heliosphere shows that, prior to their detection, ions spend 3-6 times longer transiting the heliosheath and the heliotail than they spend in the supersonic SW.