Na-Nv Liu
Northwest A&F University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Na-Nv Liu.
Journal of Biological Chemistry | 2015
Xiao-Lei Duan; Na-Nv Liu; Yan-Tao Yang; Hai-Hong Li; Ming Li; Shuo-Xing Dou; Xu-Guang Xi
Background: G-quadruplexes (G4s) play a variety of roles in DNA transactions. Results: Pif1-catalyzed duplex DNA unwinding was greatly stimulated by G4s in several aspects, including the unwinding rate and amplitude and the chemical-mechanical coupling efficiency. Conclusion: G4s significantly activate helicase Pif1-catalyzed duplex DNA unwinding through a mechanism of G4-induced dimerization. Significance: The G4-activating effect may be implicated in the rescue of stalled replication forks, activating of replication origins, and lagging strand maturation. The evolutionarily conserved G-quadruplexes (G4s) are faithfully inherited and serve a variety of cellular functions such as telomere maintenance, gene regulation, DNA replication initiation, and epigenetic regulation. Different from the Watson-Crick base-pairing found in duplex DNA, G4s are formed via Hoogsteen base pairing and are very stable and compact DNA structures. Failure of untangling them in the cell impedes DNA-based transactions and leads to genome instability. Cells have evolved highly specific helicases to resolve G4 structures. We used a recombinant nuclear form of Saccharomyces cerevisiae Pif1 to characterize Pif1-mediated DNA unwinding with a substrate mimicking an ongoing lagging strand synthesis stalled by G4s, which resembles a replication origin and a G4-structured flap in Okazaki fragment maturation. We find that the presence of G4 may greatly stimulate the Pif1 helicase to unwind duplex DNA. Further studies reveal that this stimulation results from G4-enhanced Pif1 dimerization, which is required for duplex DNA unwinding. This finding provides new insights into the properties and functions of G4s. We discuss the observed activation phenomenon in relation to the possible regulatory role of G4s in the rapid rescue of the stalled lagging strand synthesis by helping the replicator recognize and activate the replication origin as well as by quickly removing the G4-structured flap during Okazaki fragment maturation.
Nucleic Acids Research | 2015
Na-Nv Liu; Xiao-Lei Duan; Xia Ai; Yan-Tao Yang; Ming Li; Shuo-Xing Dou; Stéphane Réty; Eric Deprez; Xu-Guang Xi
ScPif1 DNA helicase is the prototypical member of a 5′-to-3′ helicase superfamily conserved from bacteria to human and plays various roles in the maintenance of genomic homeostasis. While many studies have been performed with eukaryotic Pif1 helicases, including yeast and human Pif1 proteins, the potential functions and biochemical properties of prokaryotic Pif1 helicases remain largely unknown. Here, we report the expression, purification and biochemical analysis of Pif1 helicase from Bacteroides sp. 3_1_23 (BsPif1). BsPif1 binds to a large panel of DNA substrates and, in particular, efficiently unwinds partial duplex DNAs with 5′-overhang, fork-like substrates, D-loop and flap-like substrates, suggesting that BsPif1 may act at stalled DNA replication forks and enhance Okazaki fragment maturation. Like its eukaryotic homologues, BsPif1 resolves R-loop structures and unwinds DNA–RNA hybrids. Furthermore, BsPif1 efficiently unfolds G-quadruplexes and disrupts nucleoprotein complexes. Altogether, these results highlight that prokaryotic Pif1 helicases may resolve common issues that arise during DNA transactions. Interestingly, we found that BsPif1 is different from yeast Pif1, but resembles more human Pif1 with regard to substrate specificity, helicase activity and mode of action. These findings are discussed in the context of the possible functions of prokaryotic Pif1 helicases in vivo.
Nucleic Acids Research | 2016
Wei-Fei Chen; Yang-Xue Dai; Xiao-Lei Duan; Na-Nv Liu; Wei Shi; Na Li; Ming Li; Shou-Xing Dou; Yu-Hui Dong; Stéphane Réty; Xu-Guang Xi
Pif1 helicases are ubiquitous members of the SF1B family and are essential for maintaining genome stability. It was speculated that Pif1-specific motifs may fold in specific structures, conferring distinct activities upon it. Here, we report the crystal structures of the Pif1 helicase from Bacteroides spp with and without adenosine triphosphate (ATP) analog/ssDNA. BsPif1 shares structural similarities with RecD2 and Dda helicases but has specific features in the 1B and 2B domains. The highly conserved Pif1 family specific sequence motif interacts with and constraints a putative pin-loop in domain 1B in a precise conformation. More importantly, we found that the 2B domain which contains a specific extended hairpin undergoes a significant rotation and/or movement upon ATP and DNA binding, which is absolutely required for DNA unwinding. We therefore propose a mechanism for DNA unwinding in which the 2B domain plays a predominant role. The fact that the conformational change regulates Pif1 activity may provide insight into the puzzling observation that Pif1 becomes highly processive during break-induced replication in association with Polδ, while the isolated Pif1 has low processivity.
Nucleic Acids Research | 2016
Bo Zhang; Wen-Qiang Wu; Na-Nv Liu; Xiao-Lei Duan; Ming Li; Shuo-Xing Dou; Xi-Miao Hou; Xu-Guang Xi
Alternative DNA structures that deviate from B-form double-stranded DNA such as G-quadruplex (G4) DNA can be formed by G-rich sequences that are widely distributed throughout the human genome. We have previously shown that Pif1p not only unfolds G4, but also unwinds the downstream duplex DNA in a G4-stimulated manner. In the present study, we further characterized the G4-stimulated duplex DNA unwinding phenomenon by means of single-molecule fluorescence resonance energy transfer. It was found that Pif1p did not unwind the partial duplex DNA immediately after unfolding the upstream G4 structure, but rather, it would dwell at the ss/dsDNA junction with a ‘waiting time’. Further studies revealed that the waiting time was in fact related to a protein dimerization process that was sensitive to ssDNA sequence and would become rapid if the sequence is G-rich. Furthermore, we identified that the G-rich sequence, as the G4 structure, equally stimulates duplex DNA unwinding. The present work sheds new light on the molecular mechanism by which G4-unwinding helicase Pif1p resolves physiological G4/duplex DNA structures in cells.
Nucleic Acids Research | 2018
Ke-Yu Lu; Wei-Fei Chen; Stéphane Réty; Na-Nv Liu; Wen-Qiang Wu; Yang-Xue Dai; Dan Li; Hai-Yun Ma; Shuo-Xing Dou; Xu-Guang Xi
Abstract The Saccharomyces cerevisiae Pif1 protein (ScPif1p) is the prototypical member of the Pif1 family of DNA helicases. ScPif1p is involved in the maintenance of mitochondrial, ribosomal and telomeric DNA and suppresses genome instability at G-quadruplex motifs. Here, we report the crystal structures of a truncated ScPif1p (ScPif1p237−780) in complex with different ssDNAs. Our results have revealed that a yeast-specific insertion domain protruding from the 2B domain folds as a bundle bearing an α-helix, α16. The α16 helix regulates the helicase activities of ScPif1p through interactions with the previously identified loop3. Furthermore, a biologically relevant dimeric structure has been identified, which can be further specifically stabilized by G-quadruplex DNA. Basing on structural analyses and mutational studies with DNA binding and unwinding assays, a potential G-quadruplex DNA binding site in ScPif1p monomers is suggested. Our results also show that ScPif1p uses the Q-motif to preferentially hydrolyze ATP, and a G-rich tract is preferentially recognized by more residues, consistent with previous biochemical observations. These findings provide a structural and mechanistic basis for understanding the multifunctional ScPif1p.
Journal of Biological Chemistry | 2017
Jing Shi; Wei-Fei Chen; Bo Zhang; San-Hong Fan; Xia Ai; Na-Nv Liu; Stéphane Réty; Xu-Guang Xi
Helicases play a critical role in processes such as replication or recombination by unwinding double-stranded DNA; mutations of these genes can therefore have devastating biological consequences. In humans, mutations in genes of three members of the RecQ family helicases (blm, wrn, and recq4) give rise to three strikingly distinctive clinical phenotypes: Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome, respectively. However, the molecular basis for these varying phenotypic outcomes is unclear, in part because a full mechanistic description of helicase activity is lacking. Because the helicase core domains are highly conserved, it has been postulated that functional differences among family members might be explained by significant differences in the N-terminal domains, but these domains are poorly characterized. To help fill this gap, we now describe bioinformatics, biochemical, and structural data for three vertebrate BLM proteins. We pair high resolution crystal structures with SAXS analysis to describe an internal, highly conserved sequence we term the dimerization helical bundle in N-terminal domain (DHBN). We show that, despite the N-terminal domain being loosely structured and potentially lacking a defined three-dimensional structure in general, the DHBN exists as a dimeric structure required for higher order oligomer assembly. Interestingly, the unwinding amplitude and rate decrease as BLM is assembled from dimer into hexamer, and also, the stable DHBN dimer can be dissociated upon ATP hydrolysis. Thus, the structural and biochemical characterizations of N-terminal domains will provide new insights into how the N-terminal domain affects the structural and functional organization of the full BLM molecule.
Scientific Reports | 2017
Xiao-Bin Wei; Bo Zhang; Nicolas Bazeille; Ying Yu; Na-Nv Liu; Brigitte René; Olivier Mauffret; Xu-Guang Xi
3′-5′ exonucleases are frequently found to be associated to polymerases or helicases domains in the same enzyme or could function as autonomous entities. Here we uncovered that Candida albicans Pif1 (CaPif1) displays a 3′-5′ exonuclease activity besides its main helicase activity. These two latter activities appear to reside on the same polypeptide and the new exonuclease activity could be mapped to the helicase core domain. We clearly show that CaPif1 displays exclusively exonuclease activity and unambiguously establish the directionality of the exonuclease activity as the 3′-to-5′ polarity. The enzyme appears to follow the two-metal-ion driven hydrolyzing activity exhibited by most of the nucleases, as shown by its dependence of magnesium and also by the identification of aspartic residues. Interestingly, an excellent correlation could be found between the presence of the conserved residues and the exonuclease activity when testing activities on Pif1 enzymes from eight fungal organisms. In contrast to others proteins endowed with the double helicase/exonuclease functionality, CaPif1 differs in the fact that the two activities are embedded in the same helicase domain and not located on separated domains. Our findings may suggest a biochemical basis for mechanistic studies of Pif1 family helicases.
Biochemical and Biophysical Research Communications | 2017
Jing Zhao; Bo Zhang; Junpeng Jiang; Na-Nv Liu; Qi Wei; Xu-Guang Xi; Jing Fu
Transcription-Activator Like (TAL) effectors, delivered by Xanthomonas pathogens bind specifically to UP-regulated by TAL effectors (UPT) box of the host gene promoter to arouse disease or trigger defense response. This type of protein-DNA interaction model has been applied in site-directed genome editing. However, the off-target effects of TAL have severely hindered the development of this promising technology. To better exploit the specific interaction and to deeper understand the TAL-induced host transcription rewiring, the binding between the central repeat region (CRR) of the TAL effector AvrXa27 and its UPT box variants was studied by kinetics analysis and TAL-blocked helicase unwinding assay. The results revealed that while AvrXa27 exhibited the highest affinity to the wild type UPT box, it could also bind to mutated UPT box variants, implying the possibility of non-specific interactions. Furthermore, some of these non-specific combinations restricted the helicase-elicited double-stranded DNA (dsDNA) separation to a greater extent. Our findings provide insight into the mechanism of TAL transcriptional activation and are beneficial to TAL-mediated genome modification.
Biochemical Journal | 2015
Xi-Miao Hou; Wen-Qiang Wu; Xiao-Lei Duan; Na-Nv Liu; Hai-Hong Li; Jing Fu; Shuo-Xing Dou; Ming Li; Xu-Guang Xi
Journal of Bacteriology | 2014
Wei Qin; Na-Nv Liu; Lijun Wang; Min Zhou; Hua Ren; Elisabeth Bugnard; Jie-Lin Liu; Lin-Hu Zhang; Jeremie Vendome; Jin-Shan Hu; Xu-Guang Xi