Nabil A. Alhakamy
University of Kansas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nabil A. Alhakamy.
Molecular Pharmaceutics | 2013
Nabil A. Alhakamy; Cory Berkland
Cell penetrating peptides (CPPs) have been extensively studied in polyelectrolyte complexes as a means to enhance the transfection efficiency of plasmid DNA (pDNA). Increasing the molecular weight of CPPs often enhances gene expression but poses a risk of increased cytotoxicity and immunogenicity compared to low molecular weight CCPs. Conversely, low molecular weight CPPs typically have low transfection efficiency due to large complex size. Complexes made using low molecular weight CPPs were found to be condensed to a small size by adding calcium. In this study, complexes of low molecular weight polyarginine and pDNA were condensed with calcium. These complexes showed high transfection efficiency and low cytotoxicity in A549 carcinomic human alveolar basal epithelial cells. The relationships between transfection efficiency and polyarginine size (5, 7, 9, or 11 amino acids), polyarginine/pDNA charge ratios, and calcium concentrations were studied. Polyarginine 7 was significantly more effective than other polyarginines under most formulation conditions, suggesting a link between cell penetration ability and transfection efficiency.
Therapeutic Delivery | 2013
Nabil A. Alhakamy; Adane S. Nigatu; Cory Berkland; Joshua D. Ramsey
The use of various cell-penetrating peptides (CPPs) to deliver genetic material for gene therapy applications has been a topic of interest for more than 20 years. The delivery of genetic material by using CPPs can be divided into two categories: covalently bound and electrostatically bound. Complexity of the synthesis procedure can be a significant barrier to translation when using a strategy requiring covalent binding of CPPs. In contrast, electrostatically complexing CPPs with genetic material or with a viral vector is relatively simple and has been demonstrated to improve gene delivery in both in vitro and in vivo studies. This review highlights gene therapy applications of complexes formed noncovalently between CPPs and genetic material or viruses.
Oncotarget | 2016
Wei Bin Fang; Min Yao; Gage Brummer; Diana S. Acevedo; Nabil A. Alhakamy; Cory Berkland; Nikki Cheng
Triple negative breast cancers are an aggressive subtype of breast cancer, characterized by the lack of estrogen receptor, progesterone receptor and Her2 expression. Triple negative breast cancers are non-responsive to conventional anti-hormonal and Her2 targeted therapies, making it necessary to identify new molecular targets for therapy. The chemokine CCL2 is overexpressed in invasive breast cancers, and regulates breast cancer progression through multiple mechanisms. With few approaches to target CCL2 activity, its value as a therapeutic target is unclear. In these studies, we developed a novel gene silencing approach that involves complexing siRNAs to TAT cell penetrating peptides (Ca-TAT) through non-covalent calcium cross-linking. Ca-TAT/siRNA complexes penetrated 3D collagen cultures of breast cancer cells and inhibited CCL2 expression more effectively than conventional antibody neutralization. Ca-TAT/siRNA complexes targeting CCL2 were delivered to mice bearing MDA-MB-231 breast tumor xenografts. In vivo CCL2 gene silencing inhibited primary tumor growth and metastasis, associated with a reduction in cancer stem cell renewal and recruitment of M2 macrophages. These studies are the first to demonstrate that targeting CCL2 expression in vivo may be a viable therapeutic approach to treating triple negative breast cancer.
Langmuir | 2013
Nabil A. Alhakamy; Anubhav Kaviratna; Cory Berkland; Prajnaparamita Dhar
Cell penetrating peptides (CPPs) have been established as excellent candidates for mediating drug delivery into cells. When designing synthetic CPPs for drug delivery applications, it is important to understand their ability to penetrate the cell membrane. In this paper, anionic or zwitterionic phospholipid monolayers at the air-water interface are used as model cell membranes to monitor the membrane insertion potential of synthetic CPPs. The insertion potential of CPPs having different cationic and hydrophobic amino acids were recorded using a Langmuir monolayer approach that records peptide adsorption to model membranes. Fluorescence microscopy was used to visualize alterations in phospholipid packing due to peptide insertion. All CPPs had the highest penetration potential in the presence of anionic phospholipids. In addition, two of three amphiphilic CPPs inserted into zwitterionic phospholipids, but none of the hydrophilic CPPs did. All the CPPs studied induced disruptions in phospholipid packing and domain morphology, which were most pronounced for amphiphilic CPPs. Overall, small changes to amino acids and peptide sequences resulted in dramatically different insertion potentials and membrane reorganization. Designers of synthetic CPPs for efficient intracellular drug delivery should consider small nuances in CPP electrostatic and hydrophobic properties.
Molecular Pharmaceutics | 2016
Nabil A. Alhakamy; Prajnaparamita Dhar; Cory Berkland
Noncovalent complexation of plasmid DNA (pDNA) with cell-penetrating peptides (CPPs) forms relatively large complexes with poor gene expression. Yet, condensing these CPP-pDNA complexes via addition of calcium chloride produces small and stable nanoparticles with high levels of gene expression. This simple formulation offered high transfection efficiency and negligible cytotoxicity in HEK-293 (a virus-immortalized kidney cell) and A549 (a human lung cancer cell line). Small changes in CPP charge type, charge spacing, and hydrophobicity were studied by using five arginine-rich CPPs: the well-known hydrophilic polyarginine R9 peptide, a hydrophilic RH9 peptide, and three amphiphilic peptides (RA9, RL9, and RW9) with charge distributions that favor membrane penetration. R9 and RW9 nanoparticles were significantly more effective than the other CPPs under most formulation conditions. However, these CPPs exhibit large differences in membrane penetration potential. Maximum transfection resulted from an appropriate balance of complexing with pDNA, releasing DNA, and membrane penetration potential.
Langmuir | 2015
Nabil A. Alhakamy; Ibrahim Elandaloussi; Saba Ghazvini; Cory Berkland; Prajnaparamita Dhar
Noncovalently condensed complexes of genetic material, cell penetrating peptides (CPPs), and calcium chloride present a nonviral route to improve transfection efficiency of nucleic acids (e.g., pDNA and siRNA). However, the exact mechanisms of membrane insertion and delivery of macromolecule complexes to intracellular locations as well as their stability in the intracellular environment are not understood. We show that calcium condensed gene complexes containing different hydrophilic (i.e., dTAT, K9, R9, and RH9) and amphiphilic (i.e., RA9, RL9, and RW9) CPPs formed stable cationic complexes of hydrodynamic radii 100 nm at neutral pH. However, increasing the acidity caused the complexes to become neutral or anionic and increase in size. Using zwitterionic and anionic phospholipid monolayers as models that mimic the membrane composition of the outer leaflet of cell membranes and intracellular vesicles and pHs that mimic the intracellular environment, we study the membrane insertion potential of these seven gene complexes (CPP/pDNA/Ca(2+) complexes) into model membranes. At neutral pH, all gene complexes demonstrated the highest insertion potential into anionic phospholipid membranes, with complexes containing amphiphilic peptides showing the maximum insertion. However, at acidic pH, the gene complexes demonstrated maximum monolayer insertion into zwitterionic lipids, irrespective of the chemical composition of the CPP in the complexes. Our results suggest that in the neutral environment the complexes are unable to penetrate the zwitterionic lipid membranes but can penetrate through the anionic lipid membranes. However, the acidic pH mimicking the local environment in the late endosomes leads to a significant increase in adsorption of the complexes to zwitterionic lipid headgroups and decreases for anionic headgroups. These membrane-gene complex interactions may be responsible for the ability of the complexes to efficiently enter the intracellular environment through endocytosis and escape from the endosomes to effectively deliver their genetic payload.
Breast Cancer Research and Treatment | 2015
Wei Bin Fang; Min Yao; Iman Jokar; Nabil A. Alhakamy; Cory Berkland; Jin Chen; Dana M. Brantley-Sieders; Nikki Cheng
Luminal A and B breast cancers are the most prevalent forms of breast cancer diagnosed in women. Compared to luminal A breast cancer patients, patients with luminal B breast cancers experience increased disease recurrence and lower overall survival. The mechanisms that regulate the luminal B subtype remain poorly understood. The chemokine CCL2 is overexpressed in breast cancer, correlating with poor patient prognosis. The purpose of this study was to determine the role of CCL2 expression in luminal B breast cancer cells. Breast tissues, MMTV-PyVmT and MMTV-Neu transgenic mammary tumors forming luminal B-like lesions, were immunostained for CCL2 expression. To determine the role of CCL2 in breast cancer cells, CCL2 gene expression was silenced in mammary tumor tissues and cells using TAT cell-penetrating peptides non-covalently cross linked to siRNAs (Ca-TAT/siRNA). CCL2 expression was examined by ELISA and flow cytometry. Cell growth and survival were analyzed by flow cytometry, immunocytochemistry, and fluorescence microscopy. CCL2 expression was significantly increased in luminal B breast tumors, MMTV- PyVmT and MMTV-Neu mammary tumors, compared or normal breast tissue or luminal A breast tumors. Ca-TAT delivery of CCL2 siRNAs significantly reduced CCL2 expression in PyVmT mammary tumors, and decreased cell proliferation and survival. CCL2 gene silencing in PyVmT carcinoma cells or BT474 luminal B breast cancer cells decreased cell growth and viability associated with increased necrosis and autophagy. CCL2 expression is overexpressed in luminal B breast cancer cells and is important for regulating cell growth and survival by inhibiting necrosis and autophagy.
Molecular Cancer Therapeutics | 2016
Nabil A. Alhakamy; Susumu Ishiguro; Deepthi Uppalapati; Cory Berkland; Masaaki Tamura
Transfection efficiency and toxicity concerns remain a challenge for gene therapy. Cell-penetrating peptides (CPP) have been broadly investigated to improve the transfection of genetic material (e.g., pDNA and siRNA). Here, a synthetic CPP (polylysine, K9 peptide) was complexed with angiotensin II type 2 receptor (AT2R) plasmid DNA (pAT2R) and complexes were condensed using calcium chloride. The resulting complexes were small (∼150 nm) and showed high levels of gene expression in vitro and in vivo. This simple nonviral formulation approach showed negligible cytotoxicity in four different human cell lines (cervix, breast, kidney, and lung cell lines) and one mouse cell line (a lung cancer cell line). In addition, this K9-pDNA-Ca2+ complex demonstrated cancer-targeted gene delivery when administered via intravenous injection or intratracheal spray. The transfection efficiency was evaluated in Lewis lung carcinoma (LLC) cell lines cultured in vitro and in orthotopic cancer grafts in syngeneic mice. Immunohistochemical analysis confirmed that the complex effectively delivered pAT2R to the cancer cells, where it was expressed mainly in cancer cells along with bronchial epithelial cells. A single administration of these complexes markedly attenuated lung cancer growth, offering preclinical proof-of-concept for a novel nonviral gene delivery method exhibiting effective lung tumor gene therapy via either intravenous or intratracheal administration. Mol Cancer Ther; 15(1); 209–18. ©2015 AACR.
Langmuir | 2017
Saba Ghazvini; Ryan Alonso; Nabil A. Alhakamy; Prajnaparamita Dhar
Lipid membranes, a major component of cells, are subjected to significant changes in pH depending on their location in the cell: the outer leaflet of the cell membrane is exposed to a pH of 7.4 whereas lipid membranes that make up late endosomes and lysosomes are exposed to a pH of as low as 4.4. The purpose of this study is to evaluate how changes in the environmental pH within cells alter the fluidity of phospholipid membranes. Specifically, we studied pH-induced alterations in the surface arrangement of monounsaturated lipids with zwitterionic headgroups (phosphoethanolamine (PE) and phosphocholine (PC)) that are abundant in plasma membranes as well as anionic lipids (phosphatidylserine (PS) and phosphatidylglycerol (PG)) that are abundant in inner membranes using a combination of techniques including surface tension vs area measurements, interfacial microrheology, and fluorescence/atomic force microscopy. Using an active interfacial microrheology technique, we find that phospholipids with zwitterionic headgroups show a significant increase in their surface viscosity at acidic pH. This increase in surface viscosity is also found to depend on the size of the lipid headgroup, with a smaller headgroup showing a greater increase in viscosity. The observed pH-induced increase in viscosity is also accompanied by an increase in the cohesion pressure between zwitterionic molecules at acidic pH and a decrease in the average molecular area of the lipids, as measured by fitting the surface pressure isotherms to well-established equations of state. Because fluorescent images show no change in the phase of the lipids, we attribute this change in surface viscosity to the pH-induced reorientation of the P--N+ dipoles that form part of the polar lipid headgroup, resulting in increased lipid-lipid interactions. Anionic PG headgroups do not demonstrate this pH-induced change in viscosity, suggesting that the presence of a net negative charge on the headgroup causes electrostatic repulsion between the headgroups. Our results also show that active interfacial microrheology is a sensitive technique for detecting minute changes in the lipid headgroup orientation induced by changes in the local membrane environment, even in unsaturated phospholipids where the surface viscosity is close to the experimental detection limit.
Cancer Research | 2016
Susumu Ishiguro; Nabil A. Alhakamy; Deepthi Uppalapati; Cory Berkland; Masaaki Tamura
Transfection efficiency and toxicity concerns remain a challenge for gene therapy. Nanoparticle-based gene delivery technique potentially overcomes these concerns and may be applicable to cancer gene therapy. Cell penetrating peptides (CPPs) have been broadly investigated to improve the transfection of genetic material (e.g., pDNA and siRNA). Our previous study demonstrated that an apoptosis inducer, angiotensin II type 2 receptor plasmid DNA (pAT2R) encapsulated in a modified HIV-1 TAT peptide (dTAT-pAT2R), significantly attenuated the growth of Lewis lung carcinoma (LLC) allograft in mouse lungs (Kawabata et al., Cancer Res, 2012). Here, we report a newly synthesized polylysine CPP (K9 peptide)-based gene therapy for lung cancer treatment. The pAT2R and K9 peptide (K9-pAT2R) complexes were condensed using calcium chloride (K9-pAT2R-Ca2+). The resulting complexes were small (∼150 nm) and showed high levels of gene expression in vitro. This simple non-viral formulation approach showed negligible cytotoxicity in several different human and mouse cell lines (human cervix, breast, kidney, and human and mouse lung cell lines). Additionally, this K9-pDNA-Ca2+ complex demonstrated cancer targeted gene delivery when administered via intravenous (IV) injection or intratracheal (IT) spray into LLC orthotopic allograft-bearing mice. Average lung weights (mg) of the K9-pAT2R-Ca2+ IT (190.6±48.3) and the K9-pAT2R-Ca2+ IV (201.6±67.0) treated groups were significantly smaller than that of the control PBS group (325.7±69.4, P