Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wei Bin Fang is active.

Publication


Featured researches published by Wei Bin Fang.


Journal of Clinical Investigation | 2008

The receptor tyrosine kinase EphA2 promotes mammary adenocarcinoma tumorigenesis and metastatic progression in mice by amplifying ErbB2 signaling

Dana M. Brantley-Sieders; Guanglei Zhuang; Donna Hicks; Wei Bin Fang; Yoonha Hwang; Justin M. Cates; Karen Coffman; Dowdy Jackson; Elizabeth Bruckheimer; Rebecca S. Muraoka-Cook; Jin Chen

Overexpression of the receptor tyrosine kinase EPH receptor A2 (EphA2) is commonly observed in aggressive breast cancer and correlates with a poor prognosis. However, while EphA2 has been reported to enhance tumorigenesis, proliferation, and MAPK activation in several model systems, other studies suggest that EphA2 activation diminishes these processes and inhibits the activity of MAPK upon ligand stimulation. In this study, we eliminated EphA2 expression in 2 transgenic mouse models of mammary carcinoma. EphA2 deficiency impaired tumor initiation and metastatic progression in mice overexpressing ErbB2 (also known as Neu) in the mammary epithelium (MMTV-Neu mice), but not in mice overexpressing the polyomavirus middle T antigen in mammary epithelium (MMTV-PyV-mT mice). Histologic and ex vivo analyses of MMTV-Neu mouse mammary epithelium indicated that EphA2 enhanced tumor proliferation and motility. Biochemical analyses revealed that EphA2 formed a complex with ErbB2 in human and murine breast carcinoma cells, resulting in enhanced activation of Ras-MAPK signaling and RhoA GTPase. Additionally, MMTV-Neu, but not MMTV-PyV-mT, tumors were sensitive to therapeutic inhibition of EphA2. These data suggest that EphA2 cooperates with ErbB2 to promote tumor progression in mice and may provide a novel therapeutic target for ErbB2-dependent tumors in humans. Moreover, EphA2 function in tumor progression appeared to depend on oncogene context, an important consideration for the application of therapies targeting EphA2.


Oncogene | 2005

A kinase-dependent role for EphA2 receptor in promoting tumor growth and metastasis

Wei Bin Fang; Dana M. Brantley-Sieders; Monica Parker; Alastair Reith; Jin Chen

Receptor tyrosine kinases of the Eph family are upregulated in several different types of cancer. One family member in particular, the EphA2 receptor, has been linked to breast, prostate, lung and colon cancer, as well as melanoma. However, mechanisms by which EphA2 contributes to tumor progression are far from clear. In certain tumor cell lines, EphA2 receptor is underphosphorylated, raising the question of whether ligand-induced receptor phosphorylation and its kinase activity play a role in oncogenesis. To test directly the role of EphA2 receptor phosphorylation/kinase activity in tumor progression, we generated EphA2 receptor variants that were either lacking the cytoplasmic domain or carrying a point mutation that inhibits its kinase activity. Expression of these EphA2 mutants in breast cancer cells resulted in decreased tumor volume and increased tumor apoptosis in primary tumors. In addition, the numbers of lung metastases were significantly reduced in both experimental and spontaneous metastasis models. Reduced tumor volume and metastasis are not due to defects in tumor angiogenesis, as there is no significant difference in tumor vessel density between wild-type tumors and tumors expressing EphA2-signaling-defective mutants. In contrast, tumor cells expressing the EphA2 mutants are defective in RhoA GTPase activation and cell migration. Taken together, these results suggest that receptor phosphorylation and kinase activity of the EphA2 receptor, at least in part, contribute to tumor malignancy.


The FASEB Journal | 2005

Impaired tumor microenvironment in EphA2-deficient mice inhibits tumor angiogenesis and metastatic progression

Dana M. Brantley-Sieders; Wei Bin Fang; Donna Hicks; Guanglei Zhuang; Yu Shyr; Jin Chen

EphA2 belongs to a unique family of receptor tyrosine kinases that play critical roles in development and disease. Since EphA2 is required for ephrin‐A1 ligand‐induced vascular remodeling and is overexpressed in a variety of vascularized human adenocarcinomas, we assessed tumor angiogenesis and metastatic progression in EphA2‐deficient host animals. 4T1 metastatic mammary adenocarcinoma cells transplanted subcutaneously and orthotopically into EphA2‐deficient female mice displayed decreased tumor volume, tumor cell survival, microvascular density, and lung metastasis relative to tumor‐bearing littermate controls. To determine if the phenotype in EphA2‐deficient mice was endothelial cell intrinsic, we also analyzed endothelial cells isolated from EphA2‐deficient animals for their ability to incorporate into tumor vessels in vivo, as well as to migrate in response to tumor‐derived signals in vitro. EphA2‐deficient endothelial cells displayed impaired survival and failed to incorporate into tumor microvessels in vivo, and displayed impaired tumor‐mediated migration in vitro relative to controls. These data suggest that host EphA2 receptor tyrosine kinase function is required in the tumor microenvironment for tumor angiogenesis and metastatic progression.


Cancer Research | 2006

Ephrin-A1 Facilitates Mammary Tumor Metastasis through an Angiogenesis-Dependent Mechanism Mediated by EphA Receptor and Vascular Endothelial Growth Factor in Mice

Dana M. Brantley-Sieders; Wei Bin Fang; Yoonha Hwang; Donna Hicks; Jin Chen

Ephrin-A1, the prototypic ligand for EphA receptor tyrosine kinases, is overexpressed in vascularized tumors relative to normal tissue. Moreover, ephrin-A1-Fc fusion proteins induce endothelial cell sprouting, migration, and assembly in vitro, and s.c. vascular remodeling in vivo. Based on these data, we hypothesized that native, membrane-bound ephrin-A1 regulates tumor angiogenesis and progression. We tested this hypothesis using a transplantable mouse mammary tumor model. Small interfering RNA-mediated ephrin-A1 knockdown in metastatic mammary tumor cells significantly diminishes lung metastasis without affecting tumor volume, invasion, intravasation, or lung colonization upon i.v. injection in vivo. Ephrin-A1 knockdown reduced tumor-induced endothelial cell migration in vitro and microvascular density in vivo. Conversely, overexpression of ephrin-A1 in nonmetastatic mammary tumor cells elevated microvascular density and vascular recruitment. Overexpression of ephrin-A1 elevated wild-type but not EphA2-deficient endothelial cell migration toward tumor cells, suggesting that activation of EphA2 on endothelial cells is one mechanism by which ephrin-A1 regulates angiogenesis. Furthermore, ephrin-A1 knockdown diminished, whereas overexpression of ephrin-A1 elevated, vascular endothelial growth factor (VEGF) levels in tumor cell-conditioned medium, suggesting that ephrin-A1-mediated modulation of the VEGF pathway is another mechanism by which membrane-tethered ephrin-A1 regulates angiogenic responses from initially distant host endothelium. These data suggest that ephrin-A1 is a proangiogenic signal, regulating VEGF expression and facilitating angiogenesis-dependent metastatic spread.


Journal of Cell Science | 2008

Overexpression of EPHA2 receptor destabilizes adherens junctions via a RhoA-dependent mechanism

Wei Bin Fang; Reneé C. Ireton; Guanglei Zhuang; Takamune Takahashi; Albert B. Reynolds; Jin Chen

EPHA2 receptor tyrosine kinase is overexpressed in several human cancer types and promotes malignancy. However, the mechanisms by which EPHA2 promotes tumor progression are not completely understood. Here we report that overexpression of a wild-type EPHA2, but not a signaling-defective cytoplasmic truncation mutant (ΔC), in human mammary epithelial cells weakens E-cadherin-mediated cell-cell adhesion. Interestingly, the total level of cadherins and the composition of the adherens junction complexes were not affected, nor was the tyrosine phosphorylation of the cadherin complex components changed. By contrast, RhoA GTPase activity was significantly affected by modulating the EPHA2 activity in MCF-10A cells. Treatment with a ROCK kinase inhibitor rescued cell-cell adhesion defects in EPHA2-overexpressing cells, whereas expression of constitutively activated Rho disrupted adherens junctions in ΔC-expressing cells. EPHA2-dependent Rho activation and destabilization of adherens junctions appeared to be regulated via a signaling pathway involving Src kinase, low molecular weight phosphotyrosine phosphatase (LMW-PTP) and p190 RhoGAP. EPHA2 interacted with both Src and LMW-PTP, and the interactions increased in EPHA2-overexpressing cells. In addition, LMW-PTP phosphatase activity was elevated, and this elevation was accompanied by a decrease in tyrosine phosphorylation of p190 RhoGAP and destabilization of cell-cell adhesion. Expression of either a dominant negative LMW-PTP mutant, C12S, or a wild-type p190 RhoGAP rescued adhesion defects in EPHA2-overexpressing cells. Together, these data suggest that EPHA2 promotes tumor malignancy through a mechanism involving RhoA-dependent destabilization of adherens junctions.


Neoplasia | 2003

Inhibition of VEGF-dependent multistage carcinogenesis by soluble EphA receptors.

Nikki Cheng; Dana M. Brantley; Wei Bin Fang; Hua Liu; William Fanslow; Douglas Pat Cerretti; Katrin N. Bussell; Alastair Reith; Dowdy Jackson; Jin Chen

Elevated expression of Eph receptors has long been correlated with the growth of solid tumors. However, the functional role of this family of receptor tyrosine kinases in carcinogenesis and tumor angiogenesis has not been well characterized. Here we report that soluble EphA receptors inhibit tumor angiogenesis and tumor progression in vivo in the RIP-Tag transgenic model of vascular endothelial growth factor (VEGF)-dependent multistage pancreatic islet cell carcinoma. Soluble EphA receptors delivered either by a transgene or an osmotic minipump inhibited the formation of angiogenic islet, a premalignant lesion, and reduced tumor volume of solid islet cell carcinoma. EphA2-Fc or EphA3-Fc treatment resulted in decreased tumor volume but increased tumor and endothelial cell apoptosis in vivo. In addition, soluble EphA receptors inhibited VEGF and betaTC tumor cell-conditioned medium-induced endothelial cell migration in vitro and VEGF-induced cornea angiogenesis in vivo. A dominant negative EphA2 mutant inhibited--whereas a gain-of-function EphA2 mutant enhanced--tumor cell-induced endothelial cell migration, suggesting that EphA2 receptor activation is required for tumor cell-endothelial cell interaction. These data provide functional evidence for EphA class receptor regulation of VEGF-dependent tumor angiogenesis, suggesting that the EphA signaling pathway may represent an attractive novel target for antiangiogenic therapy in cancer.


Journal of Biological Chemistry | 2012

CCL2/CCR2 Chemokine Signaling Coordinates Survival and Motility of Breast Cancer Cells through Smad3 Protein- and p42/44 Mitogen-activated Protein Kinase (MAPK)-dependent Mechanisms

Wei Bin Fang; Iman Jokar; An Zou; Diana Lambert; Prasanthi Dendukuri; Nikki Cheng

Background: CCR2 is a chemokine receptor up-regulated in breast cancer cells. Results: Inhibiting the activity of CCR2 and downstream signaling proteins Smad3 and MAPK significantly reduces CCL2-induced survival and motility. Conclusion: CCR2 regulates CCL2-induced breast cancer cell survival and motility through MAPK- and Smad3-dependent mechanisms. Significance: Learning how CCR2 functions in breast cancer cells enhances our understanding of how cells survive and migrate. Increased cell motility and survival are important hallmarks of metastatic tumor cells. However, the mechanisms that regulate the interplay between these cellular processes remain poorly understood. In these studies, we demonstrate that CCL2, a chemokine well known for regulating immune cell migration, plays an important role in signaling to breast cancer cells. We report that in a panel of mouse and human breast cancer cell lines CCL2 enhanced cell migration and survival associated with increased phosphorylation of Smad3 and p42/44MAPK proteins. The G protein-coupled receptor CCR2 was found to be elevated in breast cancers, correlating with CCL2 expression. RNA interference of CCR2 expression in breast cancer cells significantly inhibited CCL2-induced migration, survival, and phosphorylation of Smad3 and p42/44MAPK proteins. Disruption of Smad3 expression in mammary carcinoma cells blocked CCL2-induced cell survival and migration and partially reduced p42/44MAPK phosphorylation. Ablation of MAPK phosphorylation in Smad3-deficient cells with the MEK inhibitor U0126 further reduced cell survival but not migration. These data indicate that Smad3 signaling through MEK-p42/44MAPK regulates CCL2-induced cell motility and survival, whereas CCL2 induction of MEK-p42/44MAPK signaling independent of Smad3 functions as an alternative mechanism for cell survival. Furthermore, we show that CCL2-induced Smad3 signaling through MEK-p42/44MAPK regulates expression and activity of Rho GTPase to mediate CCL2-induced breast cancer cell motility and survival. With these studies, we characterize an important role for CCL2/CCR2 chemokine signaling in regulating the intrinsic relationships between breast cancer cell motility and survival with implications on the metastatic process.


Journal of Biological Chemistry | 2008

Identification and Functional Analysis of Phosphorylated Tyrosine Residues within EphA2 Receptor Tyrosine Kinase

Wei Bin Fang; Dana M. Brantley-Sieders; Yoonha Hwang; Amy-Joan L. Ham; Jin Chen

EphA2 is a member of the Eph family of receptor tyrosine kinases. EphA2 mediates cell-cell communication and plays critical roles in a number of physiological and pathologic responses. We have previously shown that EphA2 is a key regulator of tumor angiogenesis and that tyrosine phosphorylation regulates EphA2 signaling. To understand the role of EphA2 phosphorylation, we have mapped phosphorylated tyrosines within the intracellular region of EphA2 by a combination of mass spectrometry analysis and phosphopeptide mapping using two-dimensional chromatography in conjunction with site-directed mutagenesis. The function of these phosphorylated tyrosine residues was assessed by mutational analysis using EphA2-null endothelial cells reconstituted with EphA2 tyrosine-to-phenylalanine or tyrosine-to-glutamic acid substitution mutants. Phosphorylated Tyr587 and Tyr593 bind to Vav2 and Vav3 guanine nucleotide exchange factors, whereas Tyr(P)734 binds to the p85 regulatory subunit of phosphatidylinositol 3-kinase. Mutations that uncouple EphA2 with Vav guanine nucleotide exchange factors or p85 are defective in Rac1 activation and cell migration. Finally, EphA2 mutations in the juxtamembrane region (Y587F, Y593F, Y587E/Y593E), kinase domain (Y734F), or SAM domain (Y929F) inhibited ephrin-A1-induced vascular assembly. In addition, EphA2-null endothelial cells reconstituted with these mutants were unable to incorporate into tumor vasculature, suggesting a critical role of these phosphorylation tyrosine residues in transducing EphA2 signaling in vascular endothelial cells during tumor angiogenesis.


Clinical & Experimental Metastasis | 2011

Loss of one Tgfbr2 allele in fibroblasts promotes metastasis in MMTV: polyoma middle T transgenic and transplant mouse models of mammary tumor progression.

Wei Bin Fang; Iman Jokar; Anna Chytil; Harold L. Moses; Ty W. Abel; Nikki Cheng

Accumulation of fibroblasts is a phenomenon that significantly correlates with formation of aggressive cancers. While studies have shown that the TGF-β signaling pathway is an important regulator of fibroblast activation, the functional contribution of TGF-β signaling in fibroblasts during multi-step tumor progression remains largely unclear. In previous studies, we used a sub-renal capsule transplantation model to demonstrate that homozygous knockout of the Tgfbr2 gene (Tgbr2FspKO) enhanced mammary tumor growth and metastasis. Here, we show for the first time a significant role for loss of one Tgfbr2 allele during multi-step mammary tumor progression. Heterozygous deletion of Tgfbr2 in stromal cells in MMTV–PyVmT transgenic mice (PyVmT/Tgfbr2hetFspKO mice) resulted in earlier tumor formation and increased stromal cell accumulation. In contrast to previous studies of Tgbr2FspKO fibroblasts, Tgfbr2hetFspKO fibroblasts did not significantly increase tumor growth, but enhanced lung metastasis in PyVmT transgenic mice and in co-transplantation studies with PyVmT mammary carcinoma cells. Furthermore, Tgfbr2hetFspKO fibroblasts enhanced mammary carcinoma cell invasiveness associated with expression of inflammatory cytokines including CXCL12 and CCL2. Analyses of Tgbr2FspKO and Tgfbr2hetFspKO fibroblasts revealed differences in the expression of factors associated with metastatic spread, indicating potential differences in the mechanism of action between homozygous and heterozygous deletion of Tgfbr2 in stromal cells. In summary, these studies demonstrate for the first time that loss of one Tgfbr2 allele in fibroblasts enhances mammary metastases in a multi-step model of tumor progression, and demonstrate the importance of clarifying the functional contribution of genetic alterations in stromal cells in breast cancer progression.


Oncotarget | 2016

Targeted gene silencing of CCL2 inhibits triple negative breast cancer progression by blocking cancer stem cell renewal and M2 macrophage recruitment

Wei Bin Fang; Min Yao; Gage Brummer; Diana S. Acevedo; Nabil A. Alhakamy; Cory Berkland; Nikki Cheng

Triple negative breast cancers are an aggressive subtype of breast cancer, characterized by the lack of estrogen receptor, progesterone receptor and Her2 expression. Triple negative breast cancers are non-responsive to conventional anti-hormonal and Her2 targeted therapies, making it necessary to identify new molecular targets for therapy. The chemokine CCL2 is overexpressed in invasive breast cancers, and regulates breast cancer progression through multiple mechanisms. With few approaches to target CCL2 activity, its value as a therapeutic target is unclear. In these studies, we developed a novel gene silencing approach that involves complexing siRNAs to TAT cell penetrating peptides (Ca-TAT) through non-covalent calcium cross-linking. Ca-TAT/siRNA complexes penetrated 3D collagen cultures of breast cancer cells and inhibited CCL2 expression more effectively than conventional antibody neutralization. Ca-TAT/siRNA complexes targeting CCL2 were delivered to mice bearing MDA-MB-231 breast tumor xenografts. In vivo CCL2 gene silencing inhibited primary tumor growth and metastasis, associated with a reduction in cancer stem cell renewal and recruitment of M2 macrophages. These studies are the first to demonstrate that targeting CCL2 expression in vivo may be a viable therapeutic approach to treating triple negative breast cancer.

Collaboration


Dive into the Wei Bin Fang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin Chen

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Yao

University of Kansas

View shared research outputs
Top Co-Authors

Avatar

An Zou

University of Kansas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge