Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nachiket Vartak is active.

Publication


Featured researches published by Nachiket Vartak.


Nature | 2013

Small molecule inhibition of the KRAS–PDEδ interaction impairs oncogenic KRAS signalling

Gunther Zimmermann; Björn Papke; Shehab Ismail; Nachiket Vartak; Anchal Chandra; Maike Hoffmann; Stephan A. Hahn; Gemma Triola; Alfred Wittinghofer; Philippe I. H. Bastiaens; Herbert Waldmann

The KRAS oncogene product is considered a major target in anticancer drug discovery. However, direct interference with KRAS signalling has not yet led to clinically useful drugs. Correct localization and signalling by farnesylated KRAS is regulated by the prenyl-binding protein PDEδ, which sustains the spatial organization of KRAS by facilitating its diffusion in the cytoplasm. Here we report that interfering with binding of mammalian PDEδ to KRAS by means of small molecules provides a novel opportunity to suppress oncogenic RAS signalling by altering its localization to endomembranes. Biochemical screening and subsequent structure-based hit optimization yielded inhibitors of the KRAS–PDEδ interaction that selectively bind to the prenyl-binding pocket of PDEδ with nanomolar affinity, inhibit oncogenic RAS signalling and suppress in vitro and in vivo proliferation of human pancreatic ductal adenocarcinoma cells that are dependent on oncogenic KRAS. Our findings may inspire novel drug discovery efforts aimed at the development of drugs targeting oncogenic RAS.


Cell | 2010

The Palmitoylation Machinery Is a Spatially Organizing System for Peripheral Membrane Proteins

Oliver Rocks; Marc Gerauer; Nachiket Vartak; Sebastian Koch; Zhi-Ping Huang; Markos Pechlivanis; Jürgen Kuhlmann; Lucas Brunsveld; Anchal Chandra; Bernhard Ellinger; Herbert Waldmann; Philippe I. H. Bastiaens

Reversible S-palmitoylation of cysteine residues critically controls transient membrane tethering of peripheral membrane proteins. Little is known about how the palmitoylation machinery governs their defined localization and function. We monitored the spatially resolved reaction dynamics and substrate specificity of the core mammalian palmitoylation machinery using semisynthetic substrates. Palmitoylation is detectable only on the Golgi, whereas depalmitoylation occurs everywhere in the cell. The reactions are not stereoselective and lack any primary consensus sequence, demonstrating that substrate specificity is not essential for de-/repalmitoylation. Both palmitate attachment and removal require seconds to accomplish. This reaction topography and rapid kinetics allows the continuous redirection of mislocalized proteins via the post-Golgi sorting apparatus. Unidirectional secretion ensures the maintenance of a proper steady-state protein distribution between the Golgi and the plasma membrane, which are continuous with endosomes. This generic spatially organizing system differs from conventional receptor-mediated targeting mechanisms and efficiently counteracts entropy-driven redistribution of palmitoylated peripheral membrane proteins over all membranes.


Nature Chemical Biology | 2010

Small-molecule inhibition of APT1 affects Ras localization and signaling

Frank J. Dekker; Oliver Rocks; Nachiket Vartak; Sascha Menninger; Christian Hedberg; Rengarajan Balamurugan; Stefan Wetzel; Steffen Renner; Marc Gerauer; Beate Schölermann; Marion Rusch; John W. Kramer; Daniel Rauh; Geoffrey W. Coates; Luc Brunsveld; Philippe I. H. Bastiaens; Herbert Waldmann

Cycles of depalmitoylation and repalmitoylation critically control the steady-state localization and function of various peripheral membrane proteins, such as Ras proto-oncogene products. Interference with acylation using small molecules is a strategy to modulate cellular localization--and thereby unregulated signaling--caused by palmitoylated Ras proteins. We present the knowledge-based development and characterization of a potent inhibitor of acyl protein thioesterase 1 (APT1), a bona fide depalmitoylating enzyme that is, so far, poorly characterized in cells. The inhibitor, palmostatin B, perturbs the cellular acylation cycle at the level of depalmitoylation and thereby causes a loss of the precise steady-state localization of palmitoylated Ras. As a consequence, palmostatin B induces partial phenotypic reversion in oncogenic HRasG12V-transformed fibroblasts. We identify APT1 as one of the thioesterases in the acylation cycle and show that this protein is a cellular target of the inhibitor.


Cell | 2014

KRas Localizes to the Plasma Membrane by Spatial Cycles of Solubilization, Trapping and Vesicular Transport

Malte Schmick; Nachiket Vartak; Björn Papke; Marija Kovacevic; Dina C Truxius; Lisaweta Rossmannek; Philippe I. H. Bastiaens

KRas is a major proto-oncogene product whose signaling activity depends on its level of enrichment on the plasma membrane (PM). This PM localization relies on posttranslational prenylation for membrane affinity, while PM specificity has been attributed to electrostatic interactions between negatively charged phospholipids in the PM and basic amino-acids in the C terminus of KRas. By measuring kinetic parameters of KRas dynamics in living cells with a cellular-automata-based data-fitting approach in realistic cell-geometries, we show that charge-based specificity is not sufficient to generate PM enrichment in light of the total surface area of endomembranes. Instead, mislocalized KRas is continuously sequestered from endomembranes by cytosolic PDEδ to be unloaded in an Arl2-dependent manner to perinuclear membranes. Electrostatic interactions then trap KRas at the recycling endosome (RE), from where vesicular transport restores enrichment on the PM. This energy driven reaction-diffusion cycle explains how small molecule targeting of PDEδ affects the spatial organization of KRas.


Angewandte Chemie | 2011

Development of Highly Potent Inhibitors of the Ras‐Targeting Human Acyl Protein Thioesterases Based on Substrate Similarity Design

Christian Hedberg; Frank J. Dekker; Marion Rusch; Steffen Renner; Stefan Wetzel; Nachiket Vartak; Claas Gerding-Reimers; Robin S. Bon; Philippe I. H. Bastiaens; Herbert Waldmann

A matter of common sense: a common recognition motif consisting of a negatively charged group five to six bonds away (red) from the (thio)ester functionality (green) and a positively charged tail group ten to twelve bonds away (blue) was identified in two native acyl protein thioesterase 1 (APT1) substrates. This similarity led to the design of potent inhibitors of the Ras-depalmitoylating enzyme APT1.


Science Signaling | 2010

Regulation of Ras Localization by Acylation Enables a Mode of Intracellular Signal Propagation

Anna Lorentzen; Ali Kinkhabwala; Oliver Rocks; Nachiket Vartak; Philippe I. H. Bastiaens

Active Ras is relayed between subcellular compartments by the acylation cycle. Ras Radio Waves The Ras family of small guanosine triphosphatases (GTPases) has roles in cellular proliferation and is frequently mutated in tumors. Stimulation of cells with epidermal growth factor leads to the transient activation of H-Ras at the plasma membrane, followed by an echo of this activity at the Golgi. This distinct spatiotemporal activity profile suggests that the Golgi is a passive receiver of Ras signals from the plasma membrane. Lorentzen et al. performed quantitative imaging and mathematical modeling of cells in which binding of H-Ras to GDP or GTP was decoupled from the acylation cycle that maintains its spatial organization. Regulation of H-Ras binding to GDP or GTP occurred only at the plasma membrane and not at the Golgi. Furthermore, the acylation cycle delivered active H-Ras from the plasma membrane to the Golgi, as well as from the endoplasmic reticulum to the Golgi; this latter delivery route enabled sustained H-Ras activity at the Golgi after the initial activation echo. Thus, the amount of active Ras at the Golgi is determined by activation of Ras at the plasma membrane and the endoplasmic reticulum, and the acylation cycle serves to relay activated Ras between subcellular compartments. Growth factor stimulation generates transient H-Ras activity at the plasma membrane but sustained activity at the Golgi. Two overlapping regulatory networks control compartmentalized H-Ras activity: the guanosine diphosphate–guanosine triphosphate cycle and the acylation cycle, which constitutively traffics Ras isoforms that can be palmitoylated between intracellular membrane compartments. Quantitative imaging of H-Ras activity after decoupling of these networks revealed regulation of H-Ras activity at the plasma membrane but not at the Golgi. Nevertheless, upon stimulation with epidermal growth factor, Ras activity at the Golgi displayed a pulse-like profile similar to that at the plasma membrane but also remained high after the initial stimulus. A compartmental model that included the acylation cycle and H-Ras regulation at the plasma membrane accounted for the pulse-like profile of H-Ras activity at the Golgi but implied that sustained H-Ras activity at the Golgi required H-Ras activation at an additional compartment, which we experimentally determined to be the endoplasmic reticulum. Thus, in addition to maintaining the localization of Ras, the acylation cycle underlies a previously unknown form of signal propagation similar to radio transmission in its generation of a constitutive Ras “carrier wave” that transmits Ras activity between subcellular compartments.


Biophysical Journal | 2014

The Autodepalmitoylating Activity of APT Maintains the Spatial Organization of Palmitoylated Membrane Proteins

Nachiket Vartak; Bjoern Papke; Hernán E. Grecco; Lisaweta Rossmannek; Herbert Waldmann; Christian Hedberg; Philippe I. H. Bastiaens

The localization and signaling of S-palmitoylated peripheral membrane proteins is sustained by an acylation cycle in which acyl protein thioesterases (APTs) depalmitoylate mislocalized palmitoylated proteins on endomembranes. However, the APTs are themselves reversibly S-palmitoylated, which localizes thioesterase activity to the site of the antagonistc palmitoylation activity on the Golgi. Here, we resolve this conundrum by showing that palmitoylation of APTs is labile due to autodepalmitoylation, creating two interconverting thioesterase pools: palmitoylated APT on the Golgi and depalmitoylated APT in the cytoplasm, with distinct functionality. By imaging APT-substrate catalytic intermediates, we show that it is the depalmitoylated soluble APT pool that depalmitoylates substrates on all membranes in the cell, thereby establishing its function as release factor of mislocalized palmitoylated proteins in the acylation cycle. The autodepalmitoylating activity on the Golgi constitutes a homeostatic regulation mechanism of APT levels at the Golgi that ensures robust partitioning of APT substrates between the plasma membrane and the Golgi.


The EMBO Journal | 2010

Spatial cycles in G-protein crowd control

Nachiket Vartak; Philippe I. H. Bastiaens

The nature of living systems and their apparent resilience to the second law of thermodynamics has been the subject of extensive investigation and imaginative speculation. The segregation and compartmentalization of proteins is one manifestation of this departure from equilibrium conditions; the effect of which is now beginning to be elucidated. This should not come as a surprise, as even a cursory inspection of cellular processes reveals the large amount of energetic cost borne to maintain cell‐scale patterns, separations and gradients of molecules. The G‐proteins, kinases, calcium‐responsive proteins have all been shown to contain reaction cycles that are inherently coupled to their signalling activities. G‐proteins represent an important and diverse toolset used by cells to generate cellular asymmetries. Many small G‐proteins in particular, are dynamically acylated to modify their membrane affinities, or localized in an activity‐dependent manner, thus manipulating the mobility modes of these proteins beyond pure diffusion and leading to finely tuned steady state partitioning into cellular membranes. The rates of exchange of small G‐proteins over various compartments, as well as their steady state distributions enrich and diversify the landscape of possibilities that GTPase‐dependent signalling networks can display over cellular dimensions. The chemical manipulation of spatial cycles represents a new approach for the modulation of cellular signalling with potential therapeutic benefits.


Blood | 2015

Mirs-138 and -424 Control Palmitoylation-Dependent CD95-Mediated Cell Death By Targeting Acyl Protein Thioesterases 1 and 2 in Chronic Lymphocytic Leukemia

Valeska Berg; Marion Rusch; Nachiket Vartak; Christian Jüngst; Astrid Schauss; Herbert Waldmann; Christian Hedberg; Christian P. Pallasch; Philippe I. H. Bastiaens; Michael Hallek; Clemens-Martin Wendtner; Lukas P. Frenzel

Resistance toward CD95-mediated apoptosis is a hallmark of many different malignancies, as it is known from primary chronic lymphocytic leukemia (CLL) cells. Previously, we could show that miR-138 and -424 are downregulated in CLL cells. Here, we identified 2 new target genes, namely acyl protein thioesterase (APT) 1 and 2, which are under control of both miRs and thereby significantly overexpressed in CLL cells. APTs are the only enzymes known to promote depalmitoylation. Indeed, membrane proteins are significantly less palmitoylated in CLL cells compared with normal B cells. We identified APTs to directly interact with CD95 to promote depalmitoylation, thus impairing apoptosis mediated through CD95. Specific inhibition of APTs by siRNAs, treatment with miRs-138/-424, and pharmacologic approaches restore CD95-mediated apoptosis in CLL cells and other cancer cells, pointing to an important regulatory role of APTs in CD95 apoptosis. The identification of the depalmitoylation reaction of CD95 by APTs as a microRNA (miRNA) target provides a novel molecular mechanism for how malignant cells escape from CD95-mediated apoptosis. Here, we introduce palmitoylation as a novel posttranslational modification in CLL, which might impact on localization, mobility, and function of molecules, survival signaling, and migration.


ChemBioChem | 2012

Chemical-biological exploration of the limits of the Ras de- and repalmitoylating machinery.

Kristina Görmer; Marco Bürger; John A. W. Kruijtzer; Ingrid R. Vetter; Nachiket Vartak; Lucas Brunsveld; Philippe I. H. Bastiaens; Rob M. J. Liskamp; Gemma Triola; Herbert Waldmann

A dynamic de-/repalmitoylation cycle determines localization and activity of H- and N-Ras. This combined cellular de- and repalmitoylation machinery has been shown to be substrate tolerant--it accepts variation of amino acid sequence, structure and configuration. Here, semisynthetic Ras-proteins in which the C-terminal amino acids are replaced by peptoid residues are used to reveal the first limitations of substrate recognition by the de- and repalmitoylating machinery.

Collaboration


Dive into the Nachiket Vartak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge