Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nada Bulus is active.

Publication


Featured researches published by Nada Bulus.


Journal of Cell Science | 2005

CD98 modulates integrin β1 function in polarized epithelial cells

Songmin Cai; Nada Bulus; Priscila M. Fonseca-Siesser; Dong Chen; Steven K. Hanks; Ambra Pozzi; Roy Zent

The type II transmembrane protein CD98, best known as the heavy chain of the heterodimeric amino acid transporters (HAT), is required for the surface expression and basolateral localization of this transporter complex in polarized epithelial cells. CD98 also interacts with β1 integrins resulting in an increase in their affinity for ligand. In this study we explored the role of the transmembrane and cytoplasmic domains of CD98 on integrin-dependent cell adhesion and migration in polarized renal epithelial cells. We demonstrate that the transmembrane domain of CD98 was sufficient, whereas the five N-terminal amino acids of this domain were required for CD98 interactions with β1 integrins. Overexpression of either full-length CD98 or CD98 lacking its cytoplasmic tail increased cell adhesion and migration, whereas deletion of the five N-terminal amino acids of the transmembrane domain of CD98 abrogated this effect. CD98 and mutants that interacted with β1 integrins increased both focal adhesion formation and FAK and AKT phosphorylation. CD98-induced cell adhesion and migration was inhibited by addition of phosphoinositol 3-OH kinase (PI3-K) inhibitors suggesting these cell functions are PI3-K-dependent. Finally, CD98 and mutants that interacted with β1, induced marked changes in polarized renal epithelial cell branching morphogenesis in collagen gels. Thus, in polarized renal epithelial cells, CD98 might be viewed as a scaffolding protein that interacts with basolaterally expressed amino acid transporters and β1 integrins and can alter diverse cellular functions such as amino acid transport as well as cell adhesion, migration and branching morphogenesis.


Journal of The American Society of Nephrology | 2009

Modification of Collagen IV by Glucose or Methylglyoxal Alters Distinct Mesangial Cell Functions

Ambra Pozzi; Roy Zent; Sergei Chetyrkin; Corina M. Borza; Nada Bulus; Peale Chuang; Dong Chen; Billy G. Hudson; Paul A. Voziyan

Diabetic nephropathy (DN) affects both glomerular cells and the extracellular matrix (ECM), yet the pathogenic mechanisms involving cell-matrix interactions are poorly understood. Glycation alters integrin-dependent cell-ECM interactions, and perturbation of these interactions results in severe renal pathology in diabetic animals. Here, we investigated how chemical modifications of the ECM by hyperglycemia and carbonyl stress, two major features of the diabetic milieu, affect mesangial cell functions. Incubation of collagen IV with pathophysiological levels of either the carbonyl compound methylglyoxal (MGO) or glucose resulted in modification of arginine or lysine residues, respectively. Mouse mesangial cells plated on MGO-modified collagen IV showed decreased adhesion and migration. Cells plated on glucose-modified collagen IV showed reduced proliferation and migration and increased collagen IV production. Inhibiting glucose-mediated oxidative modification of collagen IV lysine residues rescued the alterations in cell growth, migration, and collagen synthesis. We propose that diabetic ECM affects mesangial cell functions via two distinct mechanisms: modification of arginine residues by MGO inhibits cell adhesion, whereas oxidative modification of lysine residues by glucose inhibits cell proliferation and increases collagen IV production. These mechanisms may contribute to mesangial cell hypertrophy and matrix expansion in DN.


Molecular and Cellular Biology | 2010

Integrin α1β1 Regulates Epidermal Growth Factor Receptor Activation by Controlling Peroxisome Proliferator-Activated Receptor γ-Dependent Caveolin-1 Expression

Xiwu Chen; Carrie Whiting; Corina M. Borza; Wen Hu; Stacey Mont; Nada Bulus; Ming-Zhi Zhang; Raymond C. Harris; Roy Zent; Ambra Pozzi

ABSTRACT Integrin α1β1 negatively regulates the generation of profibrotic reactive oxygen species (ROS) by inhibiting epidermal growth factor receptor (EGFR) activation; however, the mechanism by which it does this is unknown. In this study, we show that caveolin-1 (Cav-1), a scaffolding protein that binds integrins and controls growth factor receptor signaling, participates in integrin α1β1-mediated EGFR activation. Integrin α1-null mesangial cells (MCs) have reduced Cav-1 levels, and reexpression of the integrin α1 subunit increases Cav-1 levels, decreases EGFR activation, and reduces ROS production. Downregulation of Cav-1 in wild-type MCs increases EGFR phosphorylation and ROS synthesis, while overexpression of Cav-1 in the integrin α1-null MCs decreases EGFR-mediated ROS production. We further show that integrin α1-null MCs have increased levels of activated extracellular signal-regulated kinase (ERK), which leads to reduced activation of peroxisome proliferator-activated receptor γ (PPARγ), a transcription factor that positively regulates Cav-1 expression. Moreover, activation of PPARγ or inhibition of ERK increases Cav-1 levels in the integrin α1-null MCs. Finally, we show that glomeruli of integrin α1-null mice have reduced levels of Cav-1 and activated PPARγ but increased levels of phosphorylated EGFR both at baseline and following injury. Thus, integrin α1β1 negatively regulates EGFR activation by positively controlling Cav-1 levels, and the ERK/PPARγ axis plays a key role in regulating integrin α1β1-dependent Cav-1 expression and consequent EGFR-mediated ROS production.


Journal of The American Society of Nephrology | 2010

TGF-β Receptor Deletion in the Renal Collecting System Exacerbates Fibrosis

Leslie Gewin; Nada Bulus; Glenda Mernaugh; Gilbert W. Moeckel; Raymond C. Harris; Harold L. Moses; Ambra Pozzi; Roy Zent

TGF-beta plays a key role in upregulating matrix production in injury-induced renal fibrosis, but how TGF-beta signaling in distinct compartments of the kidney, such as specific segments of the nephron, affects the response to injury is unknown. In this study, we determined the role of TGF-beta signaling both in development of the renal collecting system and in response to injury by selectively deleting the TGF-beta type II receptor in mice at the initiation of ureteric bud development. These mice developed normally but demonstrated a paradoxic increase in fibrosis associated with enhanced levels of active TGF-beta after unilateral ureteral obstruction. Consistent with this observation, TGF-beta type II receptor deletion in cultured collecting duct cells resulted in excessive integrin alphavbeta6-dependent TGF-beta activation that increased collagen synthesis in co-cultured renal interstitial fibroblasts. These results suggest that inhibiting TGF-beta receptor-mediated function in collecting ducts may exacerbate renal fibrosis by enhancing paracrine TGF-beta signaling between epithelial and interstitial cells.


Journal of The American Society of Nephrology | 2008

Apoptosis of the Thick Ascending Limb Results in Acute Kidney Injury

Manakan B. Srichai; Chuan-Ming Hao; Linda S. Davis; Anastasia Golovin; Min Zhao; Gilbert W. Moeckel; Steve R. Dunn; Nada Bulus; Raymond C. Harris; Roy Zent; Matthew D. Breyer

Ischemia- or toxin-induced acute kidney injury is generally thought to affect the cells of the proximal tubule, but it has been difficult to define the involvement of other tubular segments because of the widespread damage caused by ischemia/reperfusion or toxin-induced injury in experimental models. For evaluation of whether thick ascending limb (TAL)-specific epithelial injury results in acute kidney injury, a novel transgenic mouse model that expresses the herpes simplex virus 1 thymidine kinase gene under the direction of the TAL-specific Tamm-Horsfall protein promoter was generated. After administration of gancyclovir, these mice demonstrated apoptosis only in TAL cells, with little evidence of neutrophil infiltration. Compared with control mice, blood urea nitrogen and creatinine levels were at least five-fold higher in the transgenic mice, which also developed oliguria and impaired urinary concentrating ability. These findings suggest that acute injury targeted only to the TAL is sufficient to cause severe acute kidney injury in mice with features similar to those observed in humans.


Journal of Biological Chemistry | 2014

The integrin β1 subunit regulates paracellular permeability of kidney proximal tubule cells.

Bertha C. Elias; Sijo Mathew; Manakan B. Srichai; Riya Palamuttam; Nada Bulus; Glenda Mernaugh; Amar B. Singh; Charles R. Sanders; Raymond C. Harris; Ambra Pozzi; Roy Zent

Background: Proximal tubule kidney epithelial cells differentiate into a “loose” epithelium by unknown mechanisms. Results: Deleting integrin β1 converts proximal tubule cells from a “loose” to a “tight” epithelium. Conclusion: Integrin β1 regulates the composition and function of tight and adherens junctions that define paracellular transport properties of proximal tubule epithelial cells. Significance: Integrins might regulate terminal differentiation of polarized epithelial cells. Epithelial cells lining the gastrointestinal tract and kidney have different abilities to facilitate paracellular and transcellular transport of water and solutes. In the kidney, the proximal tubule allows both transcellular and paracellular transport, while the collecting duct primarily facilitates transcellular transport. The claudins and E-cadherin are major structural and functional components regulating paracellular transport. In this study we present the novel finding that the transmembrane matrix receptors, integrins, play a role in regulating paracellular transport of renal proximal tubule cells. Deleting the integrin β1 subunit in these cells converts them from a “loose” epithelium, characterized by low expression of E-cadherin and claudin-7 and high expression of claudin-2, to a “tight” epithelium with increased E-cadherin and claudin-7 expression and decreased claudin-2 expression. This effect is mediated by the integrin β1 cytoplasmic tail and does not entail β1 heterodimerization with an α-subunit or its localization to the cell surface. In addition, we demonstrate that deleting the β1 subunit in the proximal tubule of the kidney results in a major urine-concentrating defect. Thus, the integrin β1 tail plays a key role in regulating the composition and function of tight and adherens junctions that define paracellular transport properties of terminally differentiated renal proximal tubule epithelial cells.


Development | 2010

Integrin-linked kinase regulates p38 MAPK-dependent cell cycle arrest in ureteric bud development

Joanna Smeeton; Xi Zhang; Nada Bulus; Glenda Mernaugh; Anika Lange; Courtney M. Karner; Thomas J. Carroll; Reinhard Fässler; Ambra Pozzi; Norman D. Rosenblum; Roy Zent

The integrin-linked kinase (ILK), pinch and parvin ternary complex connects the cytoplasmic tails of β1 integrins to the actin cytoskeleton. We recently showed that constitutive expression of ILK and alpha parvin in both the ureteric bud and the metanephric mesenchyme of the kidney is required for kidney development. In this study, we define the selective role of ILK in the ureteric bud of the mouse kidney in renal development by deleting it in the ureteric cell lineage before the onset of branching morphogenesis (E10.5). Although deleting ILK resulted in only a moderate decrease in branching, the mice died at 8 weeks of age from obstruction due to the unprecedented finding of intraluminal collecting duct cellular proliferation. ILK deletion in the ureteric bud resulted in the inability of collecting duct cells to undergo contact inhibition and to activate p38 mitogen-activated protein kinase (MAPK) in vivo and in vitro. p38 MAPK activation was not dependent on the kinase activity of ILK. Thus, we conclude that ILK plays a crucial role in activating p38 MAPK, which regulates cell cycle arrest of epithelial cells in renal tubulogenesis.


Biochimica et Biophysica Acta | 1993

Kinetic characterization of a stably expressed novel Na+/H+ exchanger (NHE-2).

Tatsuya Honda; Susan M. Knobel; Nada Bulus; Fayez K. Ghishan

We have recently reported the molecular cloning, sequencing and tissue distribution of a novel Na+/H+ exchanger (NHE-2). The cDNA for NHE-2 was cloned by screening a rat intestinal cDNA library. This clone was unique due to the fact that it lacks the first two transmembrane domains which are present in the other Na+/H+ exchanger isoforms (NHE-1, NHE-3, NHE-4). This structural change in the cDNA offered a unique opportunity to study in detail the properties of this stably expressed cDNA in chinese lung fibroblasts that lack the Na+/H+ exchanger (PS120) cells. Amiloride-sensitive Na+ uptake was linear up to 2 min in PS120 cells transfected with the cDNA. Kinetics of the amiloride-sensitive Na+ uptake showed a Vmax of 24.7 +/- 5 nmol/microliters ICW per min and a Km of 33.1 +/- 2.0 mM. The inhibitory constant (KI) for amiloride and its analogue 5-N-ethyl-N-isopropylamiloride (EIPA) was 0.15 microM and 0.66 microM, respectively. Epidermal growth factor, a known stimulator of NHE-1, also upregulated the expressed NHE-2. These results characterize the kinetic properties of this unique exchanger and suggests that the first two transmembrane domains of the Na+/H+ exchanger isoforms are not essential for the expression of amiloride-sensitive Na+ uptake.


Development | 2014

Epithelial β1 integrin is required for lung branching morphogenesis and alveolarization

Erin J. Plosa; Lisa R. Young; Peter M. Gulleman; Vasiliy V. Polosukhin; Rinat Zaynagetdinov; John T. Benjamin; Amanda M. Im; Riet van der Meer; Linda A. Gleaves; Nada Bulus; Wei Han; Lawrence S. Prince; Timothy S. Blackwell; Roy Zent

Integrin-dependent interactions between cells and extracellular matrix regulate lung development; however, specific roles for β1-containing integrins in individual cell types, including epithelial cells, remain incompletely understood. In this study, the functional importance of β1 integrin in lung epithelium during mouse lung development was investigated by deleting the integrin from E10.5 onwards using surfactant protein C promoter-driven Cre. These mutant mice appeared normal at birth but failed to gain weight appropriately and died by 4 months of age with severe hypoxemia. Defects in airway branching morphogenesis in association with impaired epithelial cell adhesion and migration, as well as alveolarization defects and persistent macrophage-mediated inflammation were identified. Using an inducible system to delete β1 integrin after completion of airway branching, we showed that alveolarization defects, characterized by disrupted secondary septation, abnormal alveolar epithelial cell differentiation, excessive collagen I and elastin deposition, and hypercellularity of the mesenchyme occurred independently of airway branching defects. By depleting macrophages using liposomal clodronate, we found that alveolarization defects were secondary to persistent alveolar inflammation. β1 integrin-deficient alveolar epithelial cells produced excessive monocyte chemoattractant protein 1 and reactive oxygen species, suggesting a direct role for β1 integrin in regulating alveolar homeostasis. Taken together, these studies define distinct functions of epithelial β1 integrin during both early and late lung development that affect airway branching morphogenesis, epithelial cell differentiation, alveolar septation and regulation of alveolar homeostasis.


PLOS ONE | 2012

CD98 Increases Renal Epithelial Cell Proliferation by Activating MAPKs

Nada Bulus; Chloé C. Féral; Ambra Pozzi; Roy Zent

CD98 heavy chain (CD98hc) is a multifunctional transmembrane spanning scaffolding protein whose extracellular domain binds with light chain amino acid transporters (Lats) to form the heterodimeric amino acid transporters (HATs). It also interacts with β1 and β3 integrins by its transmembrane and cytoplasmic domains. This interaction is proposed to be the mechanism whereby CD98 mediates cell survival and growth via currently undefined signaling pathways. In this study, we determined whether the critical function of CD98-dependent amino acid transport also plays a role in cell proliferation and defined the signaling pathways that mediate CD98-dependent proliferation of murine renal inner medullary collecting duct (IMCD) cells. We demonstrate that downregulating CD98hc expression resulted in IMCD cell death. Utilizing overexpression studies of CD98hc mutants that either lacked a cytoplasmic tail or were unable to bind to Lats we showed that CD98 increases serum-dependent cell proliferation by a mechanism that requires the CD98hc cytoplasmic tail. We further demonstrated that CD98-dependent amino acid transport increased renal tubular epithelial cell proliferation by a mechanism that does not require the CD98hc cytoplasmic tail. Both these mechanisms of increased renal tubular epithelial cell proliferation are mediated by Erk and p38 MAPK signaling. Although increased amino transport markedly activated mTor signaling, this pathway did not alter cell proliferation. Thus, these studies demonstrate that in IMCD cells, the cytoplasmic and extracellular domains of CD98hc regulate cell proliferation by distinct mechanisms that are mediated by common MAPK signaling pathways.

Collaboration


Dive into the Nada Bulus's collaboration.

Top Co-Authors

Avatar

Roy Zent

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naji N. Abumrad

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong Chen

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Amar B. Singh

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Eugenio Cersosimo

University of Texas Health Science Center at San Antonio

View shared research outputs
Researchain Logo
Decentralizing Knowledge