Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nadder Sahar is active.

Publication


Featured researches published by Nadder Sahar.


Review of Scientific Instruments | 2008

The bone diagnostic instrument II: Indentation distance increase

Paul K. Hansma; Patricia Turner; B. Drake; Eugene Yurtsev; Alexander Proctor; Phillip Mathews; Jason Lelujian; Connor Randall; Jonathan D. Adams; Ralf Jungmann; Federico Garza-de-Leon; Georg E. Fantner; Haykaz Mkrtchyan; Michael G. Pontin; Aaron Weaver; Morton B. Brown; Nadder Sahar; Ricardo Rossello; David H. Kohn

The bone diagnostic instrument (BDI) is being developed with the long-term goal of providing a way for researchers and clinicians to measure bone material properties of human bone in vivo. Such measurements could contribute to the overall assessment of bone fragility in the future. Here, we describe an improved BDI, the Osteoprobe IItrade mark. In the Osteoprobe IItrade mark, the probe assembly, which is designed to penetrate soft tissue, consists of a reference probe (a 22 gauge hypodermic needle) and a test probe (a small diameter, sharpened rod) which slides through the inside of the reference probe. The probe assembly is inserted through the skin to rest on the bone. The distance that the test probe is indented into the bone can be measured relative to the position of the reference probe. At this stage of development, the indentation distance increase (IDI) with repeated cycling to a fixed force appears to best distinguish bone that is more easily fractured from bone that is less easily fractured. Specifically, in three model systems, in which previous mechanical testing and/or tests reported here found degraded mechanical properties such as toughness and postyield strain, the BDI found increased IDI. However, it must be emphasized that, at this time, neither the IDI nor any other mechanical measurement by any technique has been shown clinically to correlate with fracture risk. Further, we do not yet understand the mechanism responsible for determining IDI beyond noting that it is a measure of the continuing damage that results from repeated loading. As such, it is more a measure of plasticity than elasticity in the bone.


Journal of the American Chemical Society | 2009

Time-Resolved Dehydration-Induced Structural Changes in an Intact Bovine Cortical Bone Revealed by Solid-State NMR Spectroscopy

Peizhi Zhu; Nadder Sahar; Michael D. Morris; David H. Kohn; Ayyalusamy Ramamoorthy

Understanding the structure and structural changes of bone, a highly heterogeneous material with a complex hierarchical architecture, continues to be a significant challenge even for high-resolution solid-state NMR spectroscopy. While it is known that dehydration affects mechanical properties of bone by decreasing its strength and toughness, the underlying structural mechanism at the atomic level is unknown. Solid-state NMR spectroscopy, controlled dehydration, and H/D exchange were used for the first time to reveal the structural changes of an intact piece of bovine cortical bone. (1)H spectra were used to monitor the dehydration of the bone inside the rotor, and high-resolution (13)C chemical shift spectra obtained under magic-angle spinning were used evaluate the dehydration-induced conformational changes in the bone. The experiments revealed the slow denaturation of collagen due to dehydration while the trans-Xaa-Pro conformation in collagen remained unchanged. Our results suggest that glycosaminoglycans in the collagen fiber and mineral interface may chelate with a Ca(2+) ion present on the surface of the mineral through sulfate or carboxylate groups. These results provide insights into the role of water molecules in the bone structure and shed light on the relationship between the structure and mechanics of bone.


Cells Tissues Organs | 2009

Exercise alters mineral and matrix composition in the absence of adding new bone.

David H. Kohn; Nadder Sahar; Joseph M. Wallace; Kurtulus Golcuk; Michael D. Morris

The mechanical properties of bone are dictated by its amount, distribution and ‘quality’. The composition of the mineral and matrix phases is integral to defining ‘bone quality’. Exercise can potentially increase resistance to fracture, yet the effects of exercise on skeletal fragility, and how alterations in fragility are modulated by the amount, distribution and composition of bone, are unknown. In this investigation, the effects of exercise on the size, composition, mechanical properties and damage resistance of bones from mice of various ages, background strains and genetic makeup were assessed, as a means of testing the hypothesis that mechanical loading can improve skeletal fragility via compositional alterations. C57BL/6 mice (4-month-old males) ran on a treadmill for 21 days. Tibiae from exercised and control mice were analyzed for cross-sectional geometry, mechanical properties, microdamage and composition. Exercise significantly increased strength without increasing cross-sectional properties, suggesting that mechanical stimulation led to changes in the bone matrix, and these changes led to the improvements in mechanical properties. Consistent with this interpretation, the mineral/matrix ratio was significantly increased in exercised bones. The number of fatigue-induced microcracks was significantly lower in exercised bones, providing evidence that exercise modulates fatigue resistance. The ratio of nonreducible/reducible cross-links mirrored the damage data. Similar trends (exercise induced increases in mechanical properties without increases in cross-sectional properties, but with compositional changes) were also observed in 2-month-old biglycan-deficient and wild-type mice bred on a C57BL/6x129 genetic background.


Journal of the American Chemical Society | 2010

Natural-Abundance 43Ca Solid-State NMR Spectroscopy of Bone

Peizhi Zhu; Zhehong Gan; Nadder Sahar; Mary M. J. Tecklenburg; Michael D. Morris; David H. Kohn; Ayyalusamy Ramamoorthy

Structural information about the coordination environment of calcium present in bone is highly valuable in understanding the role of calcium in bone formation, biomineralization, and bone diseases like osteoporosis. While a high-resolution structural study on bone has been considered to be extremely challenging, NMR studies on model compounds and bone minerals have provided valuable insight into the structure of bone. Particularly, the recent demonstration of (43)Ca solid-state NMR experiments on model compounds is an important advance in this field. However, application of (43)Ca NMR is hampered due to the low natural-abundance and poor sensitivity of (43)Ca. In this study, we report the first demonstration of natural-abundance (43)Ca magic angle spinning (MAS) NMR experiments on bone, using powdered bovine cortical bone samples. (43)Ca NMR spectra of bovine cortical bone are analyzed by comparing to the natural-abundance (43)Ca NMR spectra of model compounds including hydroxyapatite and carbonated apatite. While (43)Ca NMR spectra of hydroxyapatite and carbonated apatite are very similar, they significantly differ from those of cortical bone. Raman spectroscopy shows that the calcium environment in bone is more similar to carbonated apatite than hydroxyapatite. A close analysis of (43)Ca NMR spectra reveals that the chemical shift frequencies of cortical bone and 10% carbonated apatite are similar but the quadrupole coupling constant of cortical bone is larger than that measured for model compounds. In addition, our results suggest that an increase in the carbonate concentration decreases the observed (43)Ca chemical shift frequency. A comparison of experimentally obtained (43)Ca MAS spectra with simulations reveal a 3:4 mol ratio of Ca-I/Ca-II sites in carbonated apatite and a 2.3:3 mol ratio for hydroxyapatite. 2D triple-quantum (43)Ca MAS experiments performed on a mixture of carbonated apatite and the bone protein osteocalcin reveal the presence of protein-bound and free calcium sites, which is in agreement with a model developed from X-ray crystal structure of the protein.


Journal of Biomedical Optics | 2010

Quantitative polarized Raman spectroscopy in highly turbid bone tissue

Mekhala Raghavan; Nadder Sahar; Robert H. Wilson; Mary Ann Mycek; Nancy Pleshko; David H. Kohn; Michael D. Morris

Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim/oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (p<0.05) in oim/oim bones (28+/-3 deg) compared to wild-type bones (22+/-3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76+/-2 deg and in oim/oim mice, it is 72+/-4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.


Bone | 2012

Age-specific profiles of tissue-level composition and mechanical properties in murine cortical bone

Mekhala Raghavan; Nadder Sahar; David H. Kohn; Michael D. Morris

There is growing evidence that bone composition and tissue-level mechanical properties are significant determinants of skeletal integrity. In the current study, Raman spectroscopy and nanoindentation testing were co-localized to analyze tissue-level compositional and mechanical properties in skeletally mature young (4 or 5 months) and old (19 months) murine femora at similar spatial scales. Standard multivariate linear regression analysis revealed age-dependent patterns in the relationships between mechanical and compositional properties at the tissue scale. However, changes in bone material properties with age are often complex and nonlinear, and can be missed with linear regression and correlation-based methods. A retrospective data mining approach was implemented using non-linear multidimensional visualization and classification to identify spectroscopic and nanoindentation metrics that best discriminated bone specimens of different age-classes. The ability to classify the specimens into the correct age group increased by using combinations of Raman and nanoindentation variables (86-96% accuracy) as compared to using individual measures (59-79% accuracy). Metrics that best classified 4 or 5 month and 19 month specimens (2-age classes) were mineral to matrix ratio, crystallinity, modulus and plasticity index. Metrics that best distinguished between 4, 5 and 19 month specimens (3-age classes) were mineral to matrix ratio, crystallinity, modulus, hardness, cross-linking, carbonate to phosphate ratio, creep displacement and creep viscosity. These findings attest to the complexity of mechanisms underlying bone tissue properties and draw attention to the importance of considering non-linear interactions between tissue-level composition and mechanics that may work together to influence material properties with age. The results demonstrate that a few non-linearly combined compositional and mechanical metrics provide better discriminatory information than a single metric or a single technique.


Review of Scientific Instruments | 2009

The bone diagnostic instrument III: Testing mouse femora

Connor Randall; Phillip Mathews; Eugene Yurtsev; Nadder Sahar; David H. Kohn; Paul K. Hansma

Here we describe modifications that allow the bone diagnostic instrument (BDI) [P. Hansma et al., Rev. Sci. Instrum. 79, 064303 (2008); Rev. Sci. Instrum. 77, 075105 (2006)], developed to test human bone, to test the femora of mice. These modifications include reducing the effective weight of the instrument on the bone, designing and fabricating new probe assemblies to minimize damage to the small bone, developing new testing protocols that involve smaller testing forces, and fabricating a jig for securing the smaller bones for testing. With these modifications, the BDI was used to test the hypothesis that short-term running has greater benefit on the mechanical properties of the femur for young growing mice compared to older, skeletally mature mice. We measured elastic modulus, hardness, and indentation distance increase (IDI), which had previously been shown to be the best discriminators in model systems known to exhibit differences in mechanical properties at the whole bone level. In the young exercised murine femora, the IDI was significantly lower than in young control femora. Since IDI has a relation to postyield properties, these results suggest that exercise during bone development increases post yield mechanical competence. We were also able to measure effects of aging on bone properties with the BDI. There was a significant increase in the IDI, and a significant decrease in the elastic modulus and hardness between the young and old groups. Thus, with the modifications described here, the BDI can take measurements on mouse bones and obtain statistically significant results.


PLOS ONE | 2016

Calcium- and phosphorus-supplemented diet increases bone mass after short-term exercise and increases bone mass and structural strength after long-term exercise in adult mice

Michael A. Friedman; Alyssa M. Bailey; Matthew J. Rondon; Erin McNerny; Nadder Sahar; David H. Kohn

Exercise has long-lasting benefits to bone health that may help prevent fractures by increasing bone mass, bone strength, and tissue quality. Long-term exercise of 6–12 weeks in rodents increases bone mass and bone strength. However, in growing mice, a short-term exercise program of 3 weeks can limit increases in bone mass and structural strength, compared to non-exercised controls. Short-term exercise can, however, increase tissue strength, suggesting that exercise may create competition for minerals that favors initially improving tissue-level properties over structural-level properties. It was therefore hypothesized that adding calcium and phosphorus supplements to the diet may prevent decreases in bone mass and structural strength during a short-term exercise program, while leading to greater bone mass and structural strength than exercise alone after a long-term exercise program. A short-term exercise experiment was done for 3 weeks, and a long-term exercise experiment was done for 8 weeks. For each experiment, male 16-week old C57BL/6 mice were assigned to 4 weight-matched groups–exercise and non-exercise groups fed a control or mineral-supplemented diet. Exercise consisted of treadmill running at 12 m/min, 30 min/day for 7 days/week. After 3 weeks, exercised mice fed the supplemented diet had significantly increased tibial tissue mineral content (TMC) and cross-sectional area over exercised mice fed the control diet. After 8 weeks, tibial TMC, cross-sectional area, yield force, and ultimate force were greater from the combined treatments than from either exercise or supplemented diet alone. Serum markers of bone formation (PINP) and resorption (CTX) were both decreased by exercise on day 2. In exercised mice, day 2 PINP was significantly positively correlated with day 2 serum Ca, a correlation that was weaker and negative in non-exercised mice. Increasing dietary mineral consumption during an exercise program increases bone mass after 3 weeks and increases structural strength after 8 weeks, making bones best able to resist fracture.


Proceedings of SPIE | 2008

Polarized Raman Spectroscopy: Application to Bone Biomechanics

Mekhala Raghavan; Michael D. Morris; Nadder Sahar; David H. Kohn

Raman spectroscopic studies have shown that the properties of the organic matrix and the orientation of the mineral and matrix components of bone have a large influence on its properties. We employ polarized Raman microspectroscopy to monitor the changes in the orientation of mineral crystallites during tensile loading of bovine femora in the elastic regime. We load tissue in a custom-built dynamic mechanical tester that fits on the stage of a Raman microprobe and can accept hydrated tissue specimens. Parallel and perpendicular polarization components of the Raman spectra along the long axis of the diaphysis are obtained. We propose that the orientation and structure of mineral crystallites change on deformation of bone tissue by tensile loading.


Bios | 2010

Polarized Raman Spectroscopy of Bone Tissue: Watch the Scattering

Mekhala Raghavan; Nadder Sahar; Robert H. Wilson; Mary Ann Mycek; Nancy Pleshko; David H. Kohn; Michael D. Morris

Polarized Raman spectroscopy is widely used in the study of molecular composition and orientation in synthetic and natural polymer systems. Here, we describe the use of Raman spectroscopy to extract quantitative orientation information from bone tissue. Bone tissue poses special challenges to the use of polarized Raman spectroscopy for measurement of orientation distribution functions because the tissue is turbid and birefringent. Multiple scattering in turbid media depolarizes light and is potentially a source of error. Using a Raman microprobe, we show that repeating the measurements with a series of objectives of differing numerical apertures can be used to assess the contributions of sample turbidity and depth of field to the calculated orientation distribution functions. With this test, an optic can be chosen to minimize the systematic errors introduced by multiple scattering events. With adequate knowledge of the optical properties of these bone tissues, we can determine if elastic light scattering affects the polarized Raman measurements.

Collaboration


Dive into the Nadder Sahar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Connor Randall

University of California

View shared research outputs
Top Co-Authors

Avatar

Eugene Yurtsev

University of California

View shared research outputs
Top Co-Authors

Avatar

Paul K. Hansma

University of California

View shared research outputs
Top Co-Authors

Avatar

Peizhi Zhu

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge