Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nadeem Riaz is active.

Publication


Featured researches published by Nadeem Riaz.


Oncotarget | 2016

Mutational landscape of MCPyV-positive and MCPyV-negative Merkel cell carcinomas with implications for immunotherapy.

Gerald Goh; Trent Walradt; Vladimir Markarov; Astrid Blom; Nadeem Riaz; Ryan Doumani; Krista Stafstrom; Ata S. Moshiri; Lola Yelistratova; Jonathan L. Levinsohn; Timothy A. Chan; Paul Nghiem; Richard P. Lifton; Jaehyuk Choi

Merkel cell carcinoma (MCC) is a rare but highly aggressive cutaneous neuroendocrine carcinoma, associated with the Merkel cell polyomavirus (MCPyV) in 80% of cases. To define the genetic basis of MCCs, we performed exome sequencing of 49 MCCs. We show that MCPyV-negative MCCs have a high mutation burden (median of 1121 somatic single nucleotide variants (SSNVs) per-exome with frequent mutations in RB1 and TP53 and additional damaging mutations in genes in the chromatin modification (ASXL1, MLL2, and MLL3), JNK (MAP3K1 and TRAF7), and DNA-damage pathways (ATM, MSH2, and BRCA1). In contrast, MCPyV-positive MCCs harbor few SSNVs (median of 12.5 SSNVs/tumor) with none in the genes listed above. In both subgroups, there are rare cancer-promoting mutations predicted to activate the PI3K pathway (HRAS, KRAS, PIK3CA, PTEN, and TSC1) and to inactivate the Notch pathway (Notch1 and Notch2). TP53 mutations appear to be clinically relevant in virus-negative MCCs as 37% of these tumors harbor potentially targetable gain-of-function mutations in TP53 at p.R248 and p.P278. Moreover, TP53 mutational status predicts death in early stage MCC (5-year survival in TP53 mutant vs wild-type stage I and II MCCs is 20% vs. 92%, respectively; P = 0.0036). Lastly, we identified the tumor neoantigens in MCPyV-negative and MCPyV-positive MCCs. We found that virus-negative MCCs harbor more tumor neoantigens than melanomas or non-small cell lung cancers (median of 173, 65, and 111 neoantigens/sample, respectively), two cancers for which immune checkpoint blockade can produce durable clinical responses. Collectively, these data support the use of immunotherapies for virus-negative MCCs.


eLife | 2016

Mitochondrial DNA copy number variation across human cancers.

Ed Reznik; Martin L. Miller; Yasin Şenbabaoğlu; Nadeem Riaz; Judy Sarungbam; Satish K. Tickoo; Hikmat Al-Ahmadie; William R. Lee; Venkatraman E. Seshan; A. Ari Hakimi; Chris Sander

Mutations, deletions, and changes in copy number of mitochondrial DNA (mtDNA), are observed throughout cancers. Here, we survey mtDNA copy number variation across 22 tumor types profiled by The Cancer Genome Atlas project. We observe a tendency for some cancers, especially of the bladder, breast, and kidney, to be depleted of mtDNA, relative to matched normal tissue. Analysis of genetic context reveals an association between incidence of several somatic alterations, including IDH1 mutations in gliomas, and mtDNA content. In some but not all cancer types, mtDNA content is correlated with the expression of respiratory genes, and anti-correlated to the expression of immune response and cell-cycle genes. In tandem with immunohistochemical evidence, we find that some tumors may compensate for mtDNA depletion to sustain levels of respiratory proteins. Our results highlight the extent of mtDNA copy number variation in tumors and point to related therapeutic opportunities. DOI: http://dx.doi.org/10.7554/eLife.10769.001


JCI insight | 2016

The head and neck cancer immune landscape and its immunotherapeutic implications

Rajarsi Mandal; Yasin Şenbabaoğlu; Alexis Desrichard; Jonathan J. Havel; Martin G. Dalin; Nadeem Riaz; Ken-Wing Lee; Ian Ganly; A. Ari Hakimi; Timothy A. Chan; Luc G. Morris

Recent clinical trials have demonstrated a clear survival advantage in advanced head and neck squamous cell carcinoma (HNSCC) patients treated with immune checkpoint blockade. These emerging results reveal that HNSCC is one of the most promising frontiers for immunotherapy research. However, further progress in head and neck immuno-oncology will require a detailed understanding of the immune infiltrative landscape found in these tumors. We leveraged transcriptome data from 280 tumors profiled by The Cancer Genome Atlas (TCGA) to comprehensively characterize the immune landscape of HNSCC in order to develop a rationale for immunotherapeutic strategies in HNSCC and guide clinical investigation. We find that both HPV+ and HPV- HNSCC tumors are among the most highly immune-infiltrated cancer types. Strikingly, HNSCC had the highest median Treg/CD8+ T cell ratio and the highest levels of CD56dim NK cell infiltration, in our pan-cancer analysis of the most immune-infiltrated tumors. CD8+ T cell infiltration and CD56dim NK cell infiltration each correlated with superior survival in HNSCC. Tumors harboring genetic smoking signatures had lower immune infiltration and were associated with poorer survival, suggesting these patients may benefit from immune agonist therapy. These findings illuminate the immune landscape of HPV+ and HPV- HNSCC. Additionally, this landscape provides a potentially novel rationale for investigation of agents targeting modulators of Tregs (e.g., CTLA-4, GITR, ICOS, IDO, and VEGFA) and NK cells (e.g., KIR, TIGIT, and 4-1BB) as adjuncts to anti-PD-1 in the treatment of advanced HNSCC.


Cancer | 2015

A multi-institution pooled analysis of gastrostomy tube dependence in patients with oropharyngeal cancer treated with definitive intensity-modulated radiotherapy

Jeremy Setton; Nancy Y. Lee; Nadeem Riaz; Shao Hui Huang; John Waldron; Brian O'Sullivan; Zhigang Zhang; Weij Shi; David I. Rosenthal; Katherine A. Hutcheson; Adam S. Garden

Severe swallowing dysfunction necessitating enteral support is a well known late sequela of nonsurgical therapy for oropharyngeal cancer, but its incidence after intensity‐modulated radiotherapy has not been quantified comprehensively outside of small single‐institution series.


Journal of Radiation Oncology | 2012

Intensity-modulated radiation therapy for nasopharyngeal carcinoma: a review

T.J.C. Wang; Nadeem Riaz; S.K. Cheng; Jiade J. Lu; Nancy Y. Lee

IntroductionAdvances in radiation therapy, such as intensity-modulated radiation therapy (IMRT), have allowed high-dose delivery to tumors while sparing normal tissues. However, IMRT requires careful delineation of target volumes to prevent marginal recurrences.Results and discussionThis review discusses the recent advances in the treatment of nasopharyngeal carcinoma with particular emphasis on IMRT. Multiple phase III trials that have relied on conventional radiotherapy have shown a survival benefit to concurrent chemoradiotherapy (CCRT) over radiotherapy (RT) alone. Two randomized trials using IMRT have demonstrated decreased xerostomia rates compared to conventional radiotherapy while still maintaining excellent local control rates, although follow-up was short. While modern locoregional results are excellent, 90 % or more, distant-metastasis-free rates are not as impressive, ranging from 66 to 93 % among studies.ConclusionIMRT is an advanced technique, its excellent treatment outcomes have been reproduced in many single institution studies. Perhaps IMRT-delivered RT can replace the benefit provided by chemotherapy when added to conventional RT. Future studies should focus on reducing target volumes to minimize toxicity while dose-escalating for high-risk patients.


Oncotarget | 2016

Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival

Luc G. Morris; Nadeem Riaz; Alexis Desrichard; Yasin Şenbabaoğlu; A. Ari Hakimi; Vladimir Makarov; Jorge S. Reis-Filho; Timothy A. Chan

As tumors accumulate genetic alterations, an evolutionary process occurs in which genetically distinct subclonal populations of cells co-exist, resulting in intratumor genetic heterogeneity (ITH). The clinical implications of ITH remain poorly defined. Data are limited with respect to whether ITH is an independent determinant of patient survival outcomes, across different cancer types. Here, we report the results of a pan-cancer analysis of over 3300 tumors, showing a varied landscape of ITH across 9 cancer types. While some gene mutations are subclonal, the majority of driver gene mutations are clonal events, present in nearly all cancer cells. Strikingly, high levels of ITH are associated with poorer survival across diverse types of cancer. The adverse impact of high ITH is independent of other clinical, pathologic and molecular factors. High ITH tends to be associated with lower levels of tumor-infiltrating immune cells, but this association is not able to explain the observed survival differences. Together, these data show that ITH is a prognostic marker in multiple cancers. These results illuminate the natural history of cancer evolution, indicating that tumor heterogeneity represents a significant obstacle to cancer control.


Nature | 2017

A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy

Marta Łuksza; Nadeem Riaz; Vladimir Makarov; Vinod P. Balachandran; Matthew D. Hellmann; Alexander Solovyov; Naiyer A. Rizvi; Taha Merghoub; Arnold J. Levine; Timothy A. Chan; Jedd D. Wolchok; Benjamin D. Greenbaum

Checkpoint blockade immunotherapies enable the host immune system to recognize and destroy tumour cells. Their clinical activity has been correlated with activated T-cell recognition of neoantigens, which are tumour-specific, mutated peptides presented on the surface of cancer cells. Here we present a fitness model for tumours based on immune interactions of neoantigens that predicts response to immunotherapy. Two main factors determine neoantigen fitness: the likelihood of neoantigen presentation by the major histocompatibility complex (MHC) and subsequent recognition by T cells. We estimate these components using the relative MHC binding affinity of each neoantigen to its wild type and a nonlinear dependence on sequence similarity of neoantigens to known antigens. To describe the evolution of a heterogeneous tumour, we evaluate its fitness as a weighted effect of dominant neoantigens in the subclones of the tumour. Our model predicts survival in anti-CTLA-4-treated patients with melanoma and anti-PD-1-treated patients with lung cancer. Importantly, low-fitness neoantigens identified by our method may be leveraged for developing novel immunotherapies. By using an immune fitness model to study immunotherapy, we reveal broad similarities between the evolution of tumours and rapidly evolving pathogens.


Science | 2018

Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy

Diego Chowell; Luc G. T. Morris; Claud Grigg; Jeffrey K. Weber; Robert M. Samstein; Vladimir Makarov; Fengshen Kuo; Sviatoslav M. Kendall; David Requena; Nadeem Riaz; Benjamin D. Greenbaum; James M. Carroll; Edward B. Garon; David M. Hyman; Ahmet Zehir; David B. Solit; Michael F. Berger; Ruhong Zhou; Naiyer A. Rizvi; Timothy A. Chan

HLA genotype affects response Immunotherapy works by activating the patients own immune system to fight cancer. For effective tumor killing, CD8+ T cells recognize tumor peptides presented by human leukocyte antigen class I (HLA-I) molecules. In humans, there are three major HLA-I genes (HLA-A, HLA-B, and HLA-C). Chowell et al. asked whether germline HLA-I genotype influences how T cells recognize tumor peptides and respond to checkpoint inhibitor immunotherapies (see the Perspective by Kvistborg and Yewdell). They examined more than 1500 patients and found that heterozygosity at HLA-I loci was associated with better survival than homozygosity for one or more HLA-I genes. Thus, specific HLA-I mutations could have implications for immune recognition and for the design of epitopes for cancer vaccines and immunotherapies. Science, this issue p. 582; see also p. 516 Human leukocyte antigen superfamilies predict immunotherapy response. CD8+ T cell–dependent killing of cancer cells requires efficient presentation of tumor antigens by human leukocyte antigen class I (HLA-I) molecules. However, the extent to which patient-specific HLA-I genotype influences response to anti–programmed cell death protein 1 or anti–cytotoxic T lymphocyte–associated protein 4 is currently unknown. We determined the HLA-I genotype of 1535 advanced cancer patients treated with immune checkpoint blockade (ICB). Maximal heterozygosity at HLA-I loci (“A,” “B,” and “C”) improved overall survival after ICB compared with patients who were homozygous for at least one HLA locus. In two independent melanoma cohorts, patients with the HLA-B44 supertype had extended survival, whereas the HLA-B62 supertype (including HLA-B*15:01) or somatic loss of heterozygosity at HLA-I was associated with poor outcome. Molecular dynamics simulations of HLA-B*15:01 revealed different elements that may impair CD8+ T cell recognition of neoantigens. Our results have important implications for predicting response to ICB and for the design of neoantigen-based therapeutic vaccines.


JAMA Oncology | 2017

The Molecular Landscape of Recurrent and Metastatic Head and Neck Cancers: Insights From a Precision Oncology Sequencing Platform

Luc G. T. Morris; Raghu Chandramohan; Lyndsay West; Ahmet Zehir; Debyani Chakravarty; David G. Pfister; Richard J. Wong; Nancy Y. Lee; Eric J. Sherman; Shrujal S. Baxi; Ian Ganly; Bhuvanesh Singh; Jatin P. Shah; Ashok R. Shaha; Jay O. Boyle; Snehal G. Patel; Benjamin R. Roman; Christopher A. Barker; S. McBride; Timothy A. Chan; Snjezana Dogan; David M. Hyman; Michael F. Berger; David B. Solit; Nadeem Riaz; Alan L. Ho

Importance Recurrent and/or metastatic head and neck cancer is usually incurable. Implementation of precision oncology for these patients has been limited by incomplete understanding of the molecular alterations underlying advanced disease. At the same time, the molecular profiles of many rare head and neck cancer types are unknown. These significant gaps in knowledge need to be addressed to rationally devise new therapies. Objective To illuminate the distinct biology of recurrent and metastatic head and neck cancers and review implementation of precision oncology for patients with advanced disease. Design, Setting, and Participants After exclusions, 151 patients with advanced, treatment-resistant head and neck tumors, including squamous cell carcinoma (HNSCC), adenoid cystic carcinoma (ACC), and other salivary and cutaneous cancers, whose tumors were sequenced between January 2014 and July 2015 at Memorial Sloan Kettering were recruited. Next-generation sequencing of tumors as part of clinical care included high-depth (median 600×) exonic coverage of 410 cancer genes and whole-genome copy number analysis. Interventions Next-generation sequencing of tumors and matched normal DNA. Main Outcomes and Measures Feasibility, the frequency of actionable molecular alterations, the effect on decision making, and identification of alterations associated with recurrent and metastatic disease. Results Overall, 151 patients (95 men and 56 women; mean [range] age, 61.8 [17-100] years) were included in the study. Next-generation sequencing ultimately guided therapy in 21 of 151 patients (14%) (13 of 53 [25%] of patients with HNSCC) by refining diagnoses and matching patients to specific therapies, in some cases with dramatic responses on basket studies. Molecular alterations were potentially actionable in 28 of 135 patients (21%). The genetic profiles of recurrent and metastatic tumors were often distinct from primary tumors. Compared to primary human papillomavirus (HPV)-positive tumors, many recurrent and metastatic HPV-positive tumors exhibited a molecular profile more similar to HPV-negative tumors, including enriched frequencies of TP53 mutation (3 of 20 tumors [15%]), whole genome duplication (5 of 20 tumors [25%]), and 3p deletion (11 of 20 tumors [55%]). There were high rates of TERT promoter mutation in recurrent and metastatic HPV-negative HNSCC (13 of 30 tumors [43%]), cutaneous SCC (11 of 21 tumors [52%]), basal cell carcinoma (3 of 4 tumors [75%]), and ACC (5 of 36 tumors [14%]). Activating NOTCH1 mutations were enriched in metastatic ACCs (8 of 36 tumors [22%]). Conclusions and Relevance These findings reveal the molecular landscape of advanced disease and rare cancer subtypes, both predominant challenges in head and neck oncology. To understand the repertoire of targetable alterations in advanced cancers, it is necessary to sequence recurrent and metastatic tumors. These data are important first steps toward implementation of precision head and neck oncology.


Genes and Diseases | 2014

Unraveling the molecular genetics of head and neck cancer through genome-wide approaches

Nadeem Riaz; Luc G. T. Morris; William R. Lee; Timothy A. Chan

The past decade has seen an unprecedented increase in our understanding of the biology and etiology of head and neck squamous cell carcinomas (HNSCC). Genome-wide sequencing projects have identified a number of recurrently mutated genes, including unexpected alterations in the NOTCH pathway and chromatin related genes. Gene-expression profiling has identified 4 distinct genetic subtypes which show some parallels to lung squamous cell carcinoma biology. The identification of the human papilloma virus as one causative agent in a subset of oropharyngeal cancers and their association with a favorable prognosis has opened up avenues for new therapeutic strategies. The expanding knowledge of the underlying molecular abnormalities in this once very poorly understood cancer should allow for increasingly rational clinical trial design and improved patient outcomes.

Collaboration


Dive into the Nadeem Riaz's collaboration.

Top Co-Authors

Avatar

Nancy Y. Lee

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

S. McBride

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Eric J. Sherman

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

J.E. Leeman

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Richard J. Wong

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

S. Rao

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Suzanne L. Wolden

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

C.J. Tsai

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Benjamin H. Lok

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jeremy Setton

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge