Nadeem Zafar
University of Tennessee Health Science Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nadeem Zafar.
Biomaterials | 2014
Murali M. Yallapu; Sheema Khan; Diane M. Maher; Mara C. Ebeling; Vasudha Sundram; Neeraj Chauhan; Aditya Ganju; Swathi Balakrishna; Brij K. Gupta; Nadeem Zafar; Meena Jaggi; Subhash C. Chauhan
Prostate cancer is the most commonly diagnosed cancer disease in men in the Unites States and its management remains a challenge in everyday oncology practice. Thus, advanced therapeutic strategies are required to treat prostate cancer patients. Curcumin (CUR) is a promising anticancer agent for various cancer types. The objective of this study was to evaluate therapeutic potential of novel poly(lactic-co-glycolic acid)- CUR nanoparticles (PLGA-CUR NPs) for prostate cancer treatment. Our results indicate that PLGA-CUR NPs efficiently internalize in prostate cancer cells and release biologically active CUR in cytosolic compartment of cells for effective therapeutic activity. Cell proliferation (MTS), clonogenic, and Western blot analyses reveal that PLGA-CUR NPs can effectively inhibit proliferation and colony formation ability of prostate cancer cells than free CUR. PLGA-CUR NPs showed superior tumor regression compared to CUR in xenograft mice. Further investigations reveal that PLGA-CUR NPs inhibit nuclear β-catenin and AR expression in cells and in tumor xenograft tissues. It also suppresses STAT3 and AKT phosphorylation and leads to apoptosis via inhibition of key anti-apoptotic proteins, Mcl-1, Bcl-xL and caused induction of PARP cleavage. Additionally, significant downregulation of oncogenic miR21 and up-regulation of miR-205 was observed with PLGA-CUR NPs treatment as determined by RT-PCR and in situ hybridization analyses. A superior anti-cancer potential was attained with PSMA antibody conjugated PLGA-CUR NPs in prostate cancer cells and a significant tumor targeting of (131)I labeled PSMA antibody was achieved with PLGA-CUR NPs in prostate cancer xenograft mice model. In conclusion, PLGA-CUR NPs can significantly accumulate and exhibit superior anticancer activity in prostate cancer.
Scientific Reports | 2016
Mohd Saif Zaman; Neeraj Chauhan; Murali M. Yallapu; Rishi Kumar Gara; Diane M. Maher; Sonam Kumari; Mohammed Sikander; Sheema Khan; Nadeem Zafar; Meena Jaggi; Subhash C. Chauhan
Cervical cancer is one of the most common cancers among women worldwide. Current standards of care for cervical cancer includes surgery, radiation, and chemotherapy. Conventional chemotherapy fails to elicit therapeutic responses and causes severe systemic toxicity. Thus, developing a natural product based, safe treatment modality would be a highly viable option. Curcumin (CUR) is a well-known natural compound, which exhibits excellent anti-cancer potential by regulating many proliferative, oncogenic, and chemo-resistance associated genes/proteins. However, due to rapid degradation and poor bioavailability, its translational and clinical use has been limited. To improve these clinically relevant parameters, we report a poly(lactic-co-glycolic acid) based curcumin nanoparticle formulation (Nano-CUR). This study demonstrates that in comparison to free CUR, Nano-CUR effectively inhibits cell growth, induces apoptosis, and arrests the cell cycle in cervical cancer cell lines. Nano-CUR treatment modulated entities such as miRNAs, transcription factors, and proteins associated with carcinogenesis. Moreover, Nano-CUR effectively reduced the tumor burden in a pre-clinical orthotopic mouse model of cervical cancer by decreasing oncogenic miRNA-21, suppressing nuclear β-catenin, and abrogating expression of E6/E7 HPV oncoproteins including smoking compound benzo[a]pyrene (BaP) induced E6/E7 and IL-6 expression. These superior pre-clinical data suggest that Nano-CUR may be an effective therapeutic modality for cervical cancer.
Colloids and Surfaces B: Biointerfaces | 2016
Prashanth K.B. Nagesh; Nia R. Johnson; Vijaya K.N. Boya; Pallabita Chowdhury; Shadi F. Othman; Vahid Khalilzad-Sharghi; Bilal B. Hafeez; Aditya Ganju; Sheema Khan; Stephen W. Behrman; Nadeem Zafar; Subhash C. Chauhan; Meena Jaggi; Murali M. Yallapu
Docetaxel (Dtxl) is currently the most common therapeutic option for prostate cancer (PC). However, adverse side effects and problems associated with chemo-resistance limit its therapeutic outcome in clinical settings. A targeted nanoparticle system to improve its delivery to and activity at the tumor site could be an attractive strategy for PC therapy. Therefore, the objective of this study was to develop and determine the anti-cancer efficacy of a novel docetaxel loaded, prostate specific membrane antigen (PSMA) targeted superparamagnetic iron oxide nanoparticle (SPION) (J591-SPION-Dtxl) formulation for PC therapy. Our results showed the SPION-Dtxl formulation exhibits an optimal particle size and zeta potential, which can efficiently be internalized in PC cells. SPION-Dtxl exhibited potent anti-cancer efficacy via induction of the expression of apoptosis associated proteins, downregulation of anti-apoptotic proteins, and inhibition of chemo-resistance associated protein in PC cell lines. J591-SPION-Dtxl exhibited a profound uptake in C4-2 (PSMA(+)) cells compared to PC-3 (PSMA(-)) cells. A similar targeting potential was observed in ex-vivo studies in C4-2 tumors but not in PC-3 tumors, suggesting its tumor specific targeting. Overall, this study suggests that a PSMA antibody functionalized SPION-Dtxl formulation can be highly useful for targeted PC therapy.
Cancer Research | 2015
Sheema Khan; Mara C. Ebeling; Neeraj Chauhan; Paul A. Thompson; Rishi Kumar Gara; Aditya Ganju; Murali M. Yallapu; Stephen W. Behrman; Haotian Zhao; Nadeem Zafar; Man Mohan Singh; Meena Jaggi; Subhash C. Chauhan
The management of pancreatic ductal adenocarcinoma (PDAC) is extremely poor due to lack of an efficient therapy and development of chemoresistance to the current standard therapy, gemcitabine. Recent studies implicate the intimate reciprocal interactions between epithelia and underlying stroma due to paracrine Sonic hedgehog (SHH) signaling in producing desmoplasia and chemoresistance in PDAC. Herein, we report for the first time that a nonsteroidal drug, ormeloxifene, has potent anticancer properties and depletes tumor-associated stromal tissue by inhibiting the SHH signaling pathway in PDAC. We found that ormeloxifene inhibited cell proliferation and induced death in PDAC cells, which provoked us to investigate the combinatorial effects of ormeloxifene with gemcitabine at the molecular level. Ormeloxifene caused potent inhibition of the SHH signaling pathway via downregulation of SHH and its related important downstream targets such as Gli-1, SMO, PTCH1/2, NF-κB, p-AKT, and cyclin D1. Ormeloxifene potentiated the antitumorigenic effect of gemcitabine by 75% in PDAC xenograft mice. Furthermore, ormeloxifene depleted tumor-associated stroma in xenograft tumor tissues by inhibiting the SHH cellular signaling pathway and mouse/human collagen I expression. Xenograft tumors treated with ormeloxifene in combination with gemcitabine restored the tumor-suppressor miR-132 and inhibited stromal cell infiltration into the tumor tissues. In addition, invasiveness of tumor cells cocultivated with TGFβ-stimulated human pancreatic stromal cells was effectively inhibited by ormeloxifene treatment alone or in combination with gemcitabine. We propose that ormeloxifene has high therapeutic index and in a combination therapy with gemcitabine, it possesses great promise as a treatment of choice for PDAC/pancreatic cancer.
Cancer | 2008
Amber L. Patton; Lisa D. Duncan; Leneord Bloom; Geneen Phaneuf; Nadeem Zafar
Previous studies have confirmed the low predictive value of a diagnosis of atypical squamous cells, cannot exclude a high‐grade squamous intraepithelial lesion (ASC‐H) in a Papanicolaou (Pap) smear for subsequent high‐grade dysplasia in the postmenopausal age group. It appears plausible that the decrease in estrogen inherent in the postmenopausal state likely produces reactive cytologic atypia, which is misinterpreted as ASC‐H. The change in hormone levels observed in pregnant patients, postpartum patients, and contraceptive users, as a corollary, potentially could create a similar diagnostic dilemma. In the current study, the impact of age and altered hormone status on the frequency of ASC‐H was assessed to answer the following questions: Is the low predictive value of ASC‐H in postmenopausal women an age‐related phenomenon, and do other states that result in decreased levels of estrogen relative to progesterone have a similar association?
Journal of Oral and Maxillofacial Pathology | 2013
Sohail Qayyum; Ryan K. Meacham; Merry Sebelik; Nadeem Zafar
Sialolipoma is a rare tumor found within both major and minor salivary glands. Here we discuss sialolipoma of the parotid gland and briefly review the English literature. Including our case, a total of 35 sialolipomas have been reported, 18 within major salivary glands and 17 within minor salivary glands. Major gland sialolipomas most often are presented in the parotid gland (77%) and those from minor glands were most often seen in the palate (41%). All lesions were well circumscribed and contained mature adipose tissue intimately admixed with benign salivary gland components. Ductal dilatation was found in 100% of minor salivary gland sialolipomas but in only 28% of major salivary gland tumors. Nerve entrapment has also rarely been noted in major salivary glands (14%) whereas myxoid degeneration has been identified in rare minor salivary glands tumors (13%). Treatment is surgical excision and is curative with no reports of recurrence.
Oncogene | 2017
Sheema Khan; Mohammed Sikander; Mara C. Ebeling; Aditya Ganju; Sonam Kumari; Murali M. Yallapu; Bilal B. Hafeez; Tomoko Ise; Satoshi Nagata; Nadeem Zafar; Stephen W. Behrman; Jim Y. Wan; Hemendra M. Ghimire; Peeyush Sahay; Prabhakar Pradhan; Subhash C. Chauhan; Meena Jaggi
Although MUC13, a transmembrane mucin, is aberrantly expressed in pancreatic ductal adenocarcinoma (PDAC) and generally correlates with increased expression of HER2, the underlying mechanism remains poorly understood. Herein, we found that MUC13 co-localizes and interacts with HER2 in PDAC cells (reciprocal co-immunoprecipitation, immunofluorescence, proximity ligation, co-capping assays) and tissues (immunohistofluorescence). The results from this study demonstrate that MUC13 functionally interacts and activates HER2 at p1248 in PDAC cells, leading to stimulation of HER2 signaling cascade, including ERK1/2, FAK, AKT and PAK1 as well as regulation of the growth, cytoskeleton remodeling and motility, invasion of PDAC cells—all collectively contributing to PDAC progression. Interestingly, all of these phenotypic effects of MUC13–HER2 co-localization could be effectively compromised by depleting MUC13 and mediated by the first and second EGF-like domains of MUC13. Further, MUC13–HER2 co-localization also holds true in PDAC tissues with a strong functional correlation with events contributing to increased degree of disorder and cancer aggressiveness. In brief, findings presented here provide compelling evidence of a functional ramification of MUC13–HER2: this interaction could be potentially exploited for targeted therapeutics in a subset of patients harboring an aggressive form of PDAC.
Molecular Cancer Therapeutics | 2017
Bilal B. Hafeez; Aditya Ganju; Mohammed Sikander; Vivek K. Kashyap; Zubair Bin Hafeez; Neeraj Chauhan; Shabnam Malik; Andrew E. Massey; Manish K. Tripathi; Fathi T. Halaweish; Nadeem Zafar; Man Mohan Singh; Murali M. Yallapu; Subhash C. Chauhan; Meena Jaggi
Ormeloxifene is a clinically approved selective estrogen receptor modulator, which has also shown excellent anticancer activity, thus it can be an ideal repurposing pharmacophore. Herein, we report therapeutic effects of ormeloxifene on prostate cancer and elucidate a novel molecular mechanism of its anticancer activity. Ormeloxifene treatment inhibited epithelial-to-mesenchymal transition (EMT) process as evident by repression of N-cadherin, Slug, Snail, vimentin, MMPs (MMP2 and MMP3), β-catenin/TCF-4 transcriptional activity, and induced the expression of pGSK3β. In molecular docking analysis, ormeloxifene showed proficient docking with β-catenin and GSK3β. In addition, ormeloxifene induced apoptosis, inhibited growth and metastatic potential of prostate cancer cells and arrested cell cycle in G0–G1 phase via modulation of cell-cycle regulatory proteins (inhibition of Mcl-1, cyclin D1, and CDK4 and induction of p21 and p27). In functional assays, ormeloxifene remarkably reduced tumorigenic, migratory, and invasive potential of prostate cancer cells. In addition, ormeloxifene treatment significantly (P < 0.01) regressed the prostate tumor growth in the xenograft mouse model while administered through intraperitoneal route (250 μg/mouse, three times a week). These molecular effects of ormeloxifene were also observed in excised tumor tissues as shown by immunohistochemistry analysis. Our results, for the first time, demonstrate repurposing potential of ormeloxifene as an anticancer drug for the treatment of advanced stage metastatic prostate cancer through a novel molecular mechanism involving β-catenin and EMT pathway. Mol Cancer Ther; 16(10); 2267–80. ©2017 AACR.
Case reports in pathology | 2014
Sohail Qayyum; Jignesh G. Parikh; Nadeem Zafar
Angiosarcoma of the kidney is an exceedingly rare and aggressive neoplasm. Very few cases have been reported in the English literature to date. We report a case of primary renal angiosarcoma with extensive necrosis and discuss its diagnostic difficulties. An 86-year-old male presented with a 12 cm necrotic renal mass and multiple pulmonary and hepatic nodules. A CT guided renal biopsy revealed extensive necrosis and few vascular channels lined by malignant endothelial cells. Diagnosis was given on a morphologic base and proven by an immunohistochemical study. Primary renal angiosarcoma should be included among the differential diagnosis of necrotic renal lesions.
Southern Medical Journal | 2009
Maurice J. Schuetz; Nadeem Zafar; Mohammad A. Vasef
Mantle cell lymphoma is a well-characterized category of mature B-cell lymphoma with aberrant coexpression of CD5 antigen. This subtype of lymphoma is genetically defined by t(11;14) resulting in upregulation of cyclin D1 protein. In clinical practice, mantle cell lymphoma is typically diagnosed based on combination of morphology, CD20/CD5 coexpression, and nuclear staining of cyclin D1 protein by immunohistochemistry. Although other neoplastic processes can also be cyclin D1 positive, documentation of cyclin D1 positivity in a CD5-positive B-cell process is virtually diagnostic of mantle cell lymphoma. However, on morphologic grounds, it is well known that mantle cell lymphoma can mimic other subtypes of B-cell lymphoid neoplasm. We identified several unusual examples of immunohistochemically confirmed cyclin D1-positive mantle cell lymphoma with morphologic features overlapping with a wide variety of other subtypes of mature B-cell lymphomas including follicular, marginal zone, small lymphocytic and Burkitt lymphoma.