Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sheema Khan is active.

Publication


Featured researches published by Sheema Khan.


Biomaterials | 2014

Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer.

Murali M. Yallapu; Sheema Khan; Diane M. Maher; Mara C. Ebeling; Vasudha Sundram; Neeraj Chauhan; Aditya Ganju; Swathi Balakrishna; Brij K. Gupta; Nadeem Zafar; Meena Jaggi; Subhash C. Chauhan

Prostate cancer is the most commonly diagnosed cancer disease in men in the Unites States and its management remains a challenge in everyday oncology practice. Thus, advanced therapeutic strategies are required to treat prostate cancer patients. Curcumin (CUR) is a promising anticancer agent for various cancer types. The objective of this study was to evaluate therapeutic potential of novel poly(lactic-co-glycolic acid)- CUR nanoparticles (PLGA-CUR NPs) for prostate cancer treatment. Our results indicate that PLGA-CUR NPs efficiently internalize in prostate cancer cells and release biologically active CUR in cytosolic compartment of cells for effective therapeutic activity. Cell proliferation (MTS), clonogenic, and Western blot analyses reveal that PLGA-CUR NPs can effectively inhibit proliferation and colony formation ability of prostate cancer cells than free CUR. PLGA-CUR NPs showed superior tumor regression compared to CUR in xenograft mice. Further investigations reveal that PLGA-CUR NPs inhibit nuclear β-catenin and AR expression in cells and in tumor xenograft tissues. It also suppresses STAT3 and AKT phosphorylation and leads to apoptosis via inhibition of key anti-apoptotic proteins, Mcl-1, Bcl-xL and caused induction of PARP cleavage. Additionally, significant downregulation of oncogenic miR21 and up-regulation of miR-205 was observed with PLGA-CUR NPs treatment as determined by RT-PCR and in situ hybridization analyses. A superior anti-cancer potential was attained with PSMA antibody conjugated PLGA-CUR NPs in prostate cancer cells and a significant tumor targeting of (131)I labeled PSMA antibody was achieved with PLGA-CUR NPs in prostate cancer xenograft mice model. In conclusion, PLGA-CUR NPs can significantly accumulate and exhibit superior anticancer activity in prostate cancer.


Molecular Cancer Therapeutics | 2013

Novel Curcumin-Loaded Magnetic Nanoparticles for Pancreatic Cancer Treatment

Murali M. Yallapu; Mara C. Ebeling; Sheema Khan; Vasudha Sundram; Neeraj Chauhan; Brij K. Gupta; Susan E. Puumala; Meena Jaggi; Subhash C. Chauhan

Curcumin (CUR), a naturally occurring polyphenol derived from the root of Curcuma longa, has showed potent anticancer and cancer prevention activity in a variety of cancers. However, the clinical translation of CUR has been significantly hampered due to its extensive degradation, suboptimal pharmacokinetics, and poor bioavailability. To address these clinically relevant issues, we have developed a novel CUR-loaded magnetic nanoparticle (MNP-CUR) formulation. Herein, we have evaluated the in vitro and in vivo therapeutic efficacy of this novel MNP-CUR formulation in pancreatic cancer. Human pancreatic cancer cells (HPAF-II and Panc-1) exhibited efficient internalization of the MNP-CUR formulation in a dose-dependent manner. As a result, the MNP-CUR formulation effectively inhibited growth of HPAF-II and Panc-1 cells in cell proliferation and colony formation assays. The MNP-CUR formulation suppressed pancreatic tumor growth in an HPAF-II xenograft mouse model and improved the survival of mice by delaying tumor growth. The growth-inhibitory effect of MNP-CUR formulation correlated with the suppression of proliferating cell nuclear antigen (PCNA), B-cell lymphoma-extra large (Bcl-xL), induced myeloid leukemia cell differentiation protein (Mcl-1), cell surface–associated Mucin 1 (MUC1), collagen I, and enhanced membrane β-catenin expression. MNP-CUR formulation did not show any sign of hemotoxicity and was stable after incubation with human serum proteins. In addition, the MNP-CUR formulation improved serum bioavailability of CUR in mice up to 2.5-fold as compared with free CUR. Biodistribution studies show that a significant amount of MNP-CUR formulation was able to reach the pancreatic xenograft tumor(s), which suggests its clinical translational potential. In conclusion, this study suggests that our novel MNP-CUR formulation can be valuable for the treatment of pancreatic cancer. Mol Cancer Ther; 12(8); 1471–80. ©2013 AACR.


Journal of Ovarian Research | 2012

Current status and implications of microRNAs in ovarian cancer diagnosis and therapy

Mohd Saif Zaman; Diane M. Maher; Sheema Khan; Meena Jaggi; Subhash C. Chauhan

Ovarian cancer is the fifth most common cancer among women and causes more deaths than any other type of female reproductive cancer. Currently, treatment of ovarian cancer is based on the combination of surgery and chemotherapy. While recurrent ovarian cancer responds to additional chemotherapy treatments, the progression-free interval becomes shorter after each cycle, as chemo-resistance increases until the disease becomes incurable. There is, therefore, a strong need for prognostic and predictive markers to help optimize and personalize treatment in order to improve the outcome of ovarian cancer. An increasing number of studies indicate an essential role for microRNAs in ovarian cancer progression and chemo-resistance. MicroRNAs (miRNAs) are small endogenous non-coding RNAs (~22bp) which are frequently dysregulated in cancer. Typically, miRNAs are involved in crucial biological processes, including development, differentiation, apoptosis and proliferation. Two families of miRNAs, miR-200 and let-7, are frequently dysregulated in ovarian cancer and have been associated with poor prognosis. Both have been implicated in the regulation of epithelial-to-mesenchymal transition, a cellular transition associated with tumor aggressiveness, tumor invasion and chemo-resistance. Moreover, miRNAs also have possible implications for improving cancer diagnosis; for example miR-200 family, let-7 family, miR-21 and miR-214 may be useful in diagnostic tests to help detect ovarian cancer at an early stage. Additionally, the use of multiple target O-modified antagomirs (MTG-AMO) to inhibit oncogenic miRNAs and miRNA replacement therapy for tumor suppressor miRNAs are essential tools for miRNA based cancer therapeutics. In this review we describe the current status of the role miRNAs play in ovarian cancer and focus on the possibilities of microRNA-based therapies and the use of microRNAs as diagnostic tools.


Cancer Research | 2013

Targeting microRNAs in Pancreatic Cancer: Microplayers in the Big Game

Sheema Khan; Ansarullah; Deepak Kumar; Meena Jaggi; Subhash C. Chauhan

The prognosis of patients with pancreatic cancer is extremely poor, and current systemic therapies result in only marginal survival rates for patients. The era of targeted therapies has offered a new avenue to search for more effective therapeutic strategies. Recently, microRNAs (miRNA) that are small noncoding RNAs (18-24 nucleotides) have been associated with a number of diseases, including cancer. Disruption of miRNAs may have important implications in cancer etiology, diagnosis, and treatment. So far, focus has been on the mechanisms that are involved in translational silencing of their targets to fine tune gene expression. This review summarizes the approach for rational validation of selected candidates that might be involved in pancreatic tumorigenesis, cancer progression, and disease management. Herein, we also focus on the major issues hindering the identification of miRNAs, their linked pathways and recent advances in understanding their role as diagnostic/prognostic biomarkers, and therapeutic tools in dealing with this disease. miRNAs are expected to be robust clinical analytes, valuable for clinical research and biomarker discovery.


Drug Resistance Updates | 2014

Nanoways to overcome docetaxel resistance in prostate cancer

Aditya Ganju; Murali M. Yallapu; Sheema Khan; Stephen W. Behrman; Subhash C. Chauhan; Meena Jaggi

Prostate cancer is the most common non-cutaneous malignancy in American men. Docetaxel is a useful chemotherapeutic agent for prostate cancer that has been available for over a decade, but the length of the treatment and systemic side effects hamper compliance. Additionally, docetaxel resistance invariably emerges, leading to disease relapse. Docetaxel resistance is either intrinsic or acquired by adopting various mechanisms that are highly associated with genetic alterations, decreased influx and increased efflux of drugs. Several combination therapies and small P-glycoprotein inhibitors have been proposed to improve the therapeutic potential of docetaxel in prostate cancer. Novel therapeutic strategies that may allow reversal of docetaxel resistance include alterations of enzymes, improving drug uptake and enhancement of apoptosis. In this review, we provide the most current docetaxel reversal approaches utilizing nanotechnology. Nanotechnology mediated docetaxel delivery is superior to existing therapeutic strategies and a more effective method to induce P-glycoprotein inhibition, enhance cellular uptake, maintain sustained drug release, and improve bioavailability.


Scientific Reports | 2016

Curcumin Nanoformulation for Cervical Cancer Treatment

Mohd Saif Zaman; Neeraj Chauhan; Murali M. Yallapu; Rishi Kumar Gara; Diane M. Maher; Sonam Kumari; Mohammed Sikander; Sheema Khan; Nadeem Zafar; Meena Jaggi; Subhash C. Chauhan

Cervical cancer is one of the most common cancers among women worldwide. Current standards of care for cervical cancer includes surgery, radiation, and chemotherapy. Conventional chemotherapy fails to elicit therapeutic responses and causes severe systemic toxicity. Thus, developing a natural product based, safe treatment modality would be a highly viable option. Curcumin (CUR) is a well-known natural compound, which exhibits excellent anti-cancer potential by regulating many proliferative, oncogenic, and chemo-resistance associated genes/proteins. However, due to rapid degradation and poor bioavailability, its translational and clinical use has been limited. To improve these clinically relevant parameters, we report a poly(lactic-co-glycolic acid) based curcumin nanoparticle formulation (Nano-CUR). This study demonstrates that in comparison to free CUR, Nano-CUR effectively inhibits cell growth, induces apoptosis, and arrests the cell cycle in cervical cancer cell lines. Nano-CUR treatment modulated entities such as miRNAs, transcription factors, and proteins associated with carcinogenesis. Moreover, Nano-CUR effectively reduced the tumor burden in a pre-clinical orthotopic mouse model of cervical cancer by decreasing oncogenic miRNA-21, suppressing nuclear β-catenin, and abrogating expression of E6/E7 HPV oncoproteins including smoking compound benzo[a]pyrene (BaP) induced E6/E7 and IL-6 expression. These superior pre-clinical data suggest that Nano-CUR may be an effective therapeutic modality for cervical cancer.


Colloids and Surfaces B: Biointerfaces | 2016

PSMA targeted docetaxel-loaded superparamagnetic iron oxide nanoparticles for prostate cancer.

Prashanth K.B. Nagesh; Nia R. Johnson; Vijaya K.N. Boya; Pallabita Chowdhury; Shadi F. Othman; Vahid Khalilzad-Sharghi; Bilal B. Hafeez; Aditya Ganju; Sheema Khan; Stephen W. Behrman; Nadeem Zafar; Subhash C. Chauhan; Meena Jaggi; Murali M. Yallapu

Docetaxel (Dtxl) is currently the most common therapeutic option for prostate cancer (PC). However, adverse side effects and problems associated with chemo-resistance limit its therapeutic outcome in clinical settings. A targeted nanoparticle system to improve its delivery to and activity at the tumor site could be an attractive strategy for PC therapy. Therefore, the objective of this study was to develop and determine the anti-cancer efficacy of a novel docetaxel loaded, prostate specific membrane antigen (PSMA) targeted superparamagnetic iron oxide nanoparticle (SPION) (J591-SPION-Dtxl) formulation for PC therapy. Our results showed the SPION-Dtxl formulation exhibits an optimal particle size and zeta potential, which can efficiently be internalized in PC cells. SPION-Dtxl exhibited potent anti-cancer efficacy via induction of the expression of apoptosis associated proteins, downregulation of anti-apoptotic proteins, and inhibition of chemo-resistance associated protein in PC cell lines. J591-SPION-Dtxl exhibited a profound uptake in C4-2 (PSMA(+)) cells compared to PC-3 (PSMA(-)) cells. A similar targeting potential was observed in ex-vivo studies in C4-2 tumors but not in PC-3 tumors, suggesting its tumor specific targeting. Overall, this study suggests that a PSMA antibody functionalized SPION-Dtxl formulation can be highly useful for targeted PC therapy.


Cancer Research | 2015

Ormeloxifene Suppresses Desmoplasia and Enhances Sensitivity of Gemcitabine in Pancreatic Cancer

Sheema Khan; Mara C. Ebeling; Neeraj Chauhan; Paul A. Thompson; Rishi Kumar Gara; Aditya Ganju; Murali M. Yallapu; Stephen W. Behrman; Haotian Zhao; Nadeem Zafar; Man Mohan Singh; Meena Jaggi; Subhash C. Chauhan

The management of pancreatic ductal adenocarcinoma (PDAC) is extremely poor due to lack of an efficient therapy and development of chemoresistance to the current standard therapy, gemcitabine. Recent studies implicate the intimate reciprocal interactions between epithelia and underlying stroma due to paracrine Sonic hedgehog (SHH) signaling in producing desmoplasia and chemoresistance in PDAC. Herein, we report for the first time that a nonsteroidal drug, ormeloxifene, has potent anticancer properties and depletes tumor-associated stromal tissue by inhibiting the SHH signaling pathway in PDAC. We found that ormeloxifene inhibited cell proliferation and induced death in PDAC cells, which provoked us to investigate the combinatorial effects of ormeloxifene with gemcitabine at the molecular level. Ormeloxifene caused potent inhibition of the SHH signaling pathway via downregulation of SHH and its related important downstream targets such as Gli-1, SMO, PTCH1/2, NF-κB, p-AKT, and cyclin D1. Ormeloxifene potentiated the antitumorigenic effect of gemcitabine by 75% in PDAC xenograft mice. Furthermore, ormeloxifene depleted tumor-associated stroma in xenograft tumor tissues by inhibiting the SHH cellular signaling pathway and mouse/human collagen I expression. Xenograft tumors treated with ormeloxifene in combination with gemcitabine restored the tumor-suppressor miR-132 and inhibited stromal cell infiltration into the tumor tissues. In addition, invasiveness of tumor cells cocultivated with TGFβ-stimulated human pancreatic stromal cells was effectively inhibited by ormeloxifene treatment alone or in combination with gemcitabine. We propose that ormeloxifene has high therapeutic index and in a combination therapy with gemcitabine, it possesses great promise as a treatment of choice for PDAC/pancreatic cancer.


Drug Discovery Today | 2017

miRNA nanotherapeutics for cancer.

Aditya Ganju; Sheema Khan; Bilal B. Hafeez; Stephen W. Behrman; Murali M. Yallapu; Subhash C. Chauhan; Meena Jaggi

MicroRNAs (miRNAs) are noncoding RNA molecules that regulate gene expression through diverse mechanisms. Increasing evidence suggests that miRNA-based therapies, either restoring or repressing miRNA expression and activity, hold great promise. However, the efficient delivery of miRNAs to target tissues is a major challenge in the transition of miRNA therapy to the clinic. Cationic polymers or viral vectors are efficient delivery agents but their systemic toxicity and immunogenicity limit their clinical usage. Efficient targeting and sustained release of miRNAs/anti-miRNAs using nanoparticles (NPs) conjugated with antibodies and/or peptides could reduce the required therapeutic dosage while minimizing systemic and cellular toxicity. Given their importance in clinical oncology, here we focus on the development of miRNA nanoformulations to achieve enhanced cellular uptake, bioavailability, and accumulation at the tumor site.


Medicinal Research Reviews | 2015

The Roles of Cellular Nanomechanics in Cancer

Murali M. Yallapu; Kalpana S. Katti; Dinesh R. Katti; Sanjay R. Mishra; Sheema Khan; Meena Jaggi; Subhash C. Chauhan

The biomechanical properties of cells and tissues may be instrumental in increasing our understanding of cellular behavior and cellular manifestations of diseases such as cancer. Nanomechanical properties can offer clinical translation of therapies beyond what are currently employed. Nanomechanical properties, often measured by nanoindentation methods using atomic force microscopy, may identify morphological variations, cellular binding forces, and surface adhesion behaviors that efficiently differentiate normal cells and cancer cells. The aim of this review is to examine current research involving the general use of atomic force microscopy/nanoindentation in measuring cellular nanomechanics; various factors and instrumental conditions that influence the nanomechanical properties of cells; and implementation of nanoindentation methods to distinguish cancer cells from normal cells or tissues. Applying these fundamental nanomechanical properties to current discoveries in clinical treatment may result in greater efficiency in diagnosis, treatment, and prevention of cancer, which ultimately can change the lives of patients.

Collaboration


Dive into the Sheema Khan's collaboration.

Top Co-Authors

Avatar

Meena Jaggi

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Subhash C. Chauhan

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Murali M. Yallapu

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Stephen W. Behrman

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Nadeem Zafar

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Neeraj Chauhan

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Mara C. Ebeling

University of South Dakota

View shared research outputs
Top Co-Authors

Avatar

Aditya Ganju

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Sonam Kumari

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Pallabita Chowdhury

University of Tennessee Health Science Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge