Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nadejda Valiaeva is active.

Publication


Featured researches published by Nadejda Valiaeva.


Antimicrobial Agents and Chemotherapy | 2005

Comparison of the Antiviral Activities of Alkoxyalkyl and Alkyl Esters of Cidofovir against Human and Murine Cytomegalovirus Replication In Vitro

William B. Wan; James R. Beadle; Caroll B. Hartline; Earl R. Kern; Stephanie L. Ciesla; Nadejda Valiaeva; Karl Y. Hostetler

ABSTRACT Alkoxyalkyl esters of cidofovir (CDV) have substantially greater antiviral activity and selectivity than unmodified CDV against herpesviruses and orthopoxviruses in vitro. Enhancement of antiviral activity was also noted when cyclic CDV was esterified with alkoxyalkanols. In vitro antiviral activity of the most active analogs against human cytomegalovirus (HCMV) and orthopoxviruses was increased relative to CDV up to 1,000- or 200-fold, respectively. Alkyl chain length and linker structure are important potential modifiers of antiviral activity and selectivity. In this study, we synthesized a series of alkoxyalkyl esters of CDV or cyclic CDV with alkyl chains from 8 to 24 atoms and having linker moieties of glycerol, propanediol, and ethanediol. We also synthesized alkyl esters of CDV which lack the linker to determine if the alkoxyalkyl linker moiety is required for activity. The new compounds were evaluated in vitro against HCMV and murine CMV (MCMV). CDV or cyclic CDV analogs both with and without linker moieties were highly active against HCMV and MCMV, and their activities were strongly dependent on chain length. The most active compounds had 20 atoms esterified to the phosphonate of CDV. Both alkoxypropyl and alkyl esters of CDV provided enhanced antiviral activities against CMV in vitro. Thus, the oxypropyl linker moiety is not required for enhanced activity. CDV analogs having alkyl ethers linked to glycerol or ethanediol linker groups also demonstrated increased activity against CMV.


Antiviral Research | 2009

Antiviral evaluation of octadecyloxyethyl esters of (S)-3-hydroxy-2-(phosphonomethoxy)propyl nucleosides against herpesviruses and orthopoxviruses ☆

Nadejda Valiaeva; Mark N. Prichard; R. Mark L. Buller; James R. Beadle; Caroll B. Hartline; Kathy A. Keith; Jill Schriewer; Julissa Trahan; Karl Y. Hostetler

Our previous studies showed that esterification of 9-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]adenine (HPMPA) or 1-(S)-[3-hydroxy-2-(phosphonomethoxy)-propyl]cytosine (HPMPC) with alkoxyalkyl groups such as hexadecyloxypropyl (HDP) or octadecyloxyethyl (ODE) resulted in large increases in antiviral activity and oral bioavailability. The HDP and ODE esters of HPMPA were shown to be active in cells infected with human immunodeficiency virus, type 1 (HIV-1), while HPMPA itself was virtually inactive. To explore this approach in greater detail, we synthesized four new compounds in this series, the ODE esters of 9-(S)-[3-hydroxy-2-(phosphonomethoxy)-propyl]guanine (HPMPG), 1-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]thymine (HPMPT), 9-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]-2,6-diaminopurine (HPMPDAP) and 9-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]-2-amino-6-cyclopropylaminopurine (HPMP-cPrDAP) and evaluated their antiviral activity against herpes simplex virus, type 1 (HSV-1), human cytomegalovirus (HCMV), and vaccinia, cowpox and ectromelia. Against HSV-1, subnanomolar EC(50) values were observed with ODE-HPMPA and ODE-HPMPC while ODE-HPMPG had intermediate antiviral activity with an EC(50) of 40 nM. In HFF cells infected with HCMV, the lowest EC(50) values were observed with ODE-HPMPC, 0.9 nM. ODE-HPMPA was highly active with an EC(50) of 3 nM, while ODE-HPMPG and ODE-HPMPDAP were also highly active with EC(50)s of 22 and 77 nM, respectively. Against vaccinia and cowpox viruses, ODE-HPMPG and ODE-HPMPDAP were the most active and selective compounds with EC(50) values of 20-60 nM and selectivity index values of 600-3500. ODE-HPMPG was also active against ectromelia virus with an EC(50) value of 410 nM and a selectivity index value of 166. ODE-HPMPG and ODE-HPMPDAP are proposed for further preclinical evaluation as possible candidates for treatment of HSV, HCMV or orthopoxvirus diseases.


Antimicrobial Agents and Chemotherapy | 2008

Inhibition of Herpesvirus Replication by Hexadecyloxypropyl Esters of Purine- and Pyrimidine-Based Phosphonomethoxyethyl Nucleoside Phosphonates

Mark N. Prichard; Caroll B. Hartline; Emma A. Harden; Shannon Daily; James R. Beadle; Nadejda Valiaeva; Earl R. Kern; Karl Y. Hostetler

ABSTRACT Patients infected with human immunodeficiency virus (HIV) often suffer from herpesvirus infections as a result of immunosuppression. These infections can occur while patients are receiving antiretroviral therapy, and additional drugs required to treat their infection can adversely affect compliance. It would be useful to have antivirals with a broader spectrum of activity that included both HIV and the herpesviruses. We reported previously that alkoxyalkyl ester prodrugs of cidofovir are up to 3 orders of magnitude more active against herpesvirus replication and may be less toxic than the unmodified drug. To determine if this strategy would be effective for certain phosphonomethoxyethyl nucleoside phosphonates which are also active against HIV infections, the hexadecyloxypropyl (HDP) esters of 1-(phosphonomethoxyethyl)-cytosine, 1-(phosphonomethoxyethyl)-5-bromo-cytosine (PME-5BrC), 1-(phosphonomethoxyethyl)-5-fluoro-cytosine, 9-(phosphonomethoxyethyl)-2,6-diaminopurine (PME-DAP), and 9-(phosphonomethoxyethyl)-2-amino-6-cyclopropylaminopurine (PME-cPrDAP) were evaluated for activity against herpesvirus replication. The HDP esters were substantially more active than the unmodified acyclic nucleoside phosphonates, indicating that esterification with alkoxyalkyl groups increases the antiviral activity of many acyclic nucleoside phosphonates. The most interesting compounds included HDP-PME-cPrDAP and HDP-PME-DAP, which were 12- to 43-fold more active than the parent nucleoside phosphonates against herpes simplex virus and cytomegalovirus, and HDP-PME-cPrDAP and HDP-PME-5BrC which were especially active against Epstein-Barr virus. The results presented here indicate that HDP-esterified acyclic nucleoside phosphonates with antiviral activity against HIV also inhibit the replication of some herpesviruses and can extend the spectrum of activity for these compounds.


Antimicrobial Agents and Chemotherapy | 2009

Antischistosomal Activity of Hexadecyloxypropyl Cyclic 9-(S)-[3-Hydroxy-2-(Phosphonomethoxy)Propyl]Adenine and Other Alkoxyalkyl Esters of Acyclic Nucleoside Phosphonates Assessed by Schistosome Worm Killing In Vitro

Sanaa S. Botros; Samia William; James R. Beadle; Nadejda Valiaeva; Karl Y. Hostetler

ABSTRACT 9-(S)-[3-Hydroxy-2-(phosphonomethoxy)propyl]adenine [(S)-HPMPA] has been reported to have antischistosomal activity. Ether lipid esters of (S)-HPMPA and cidofovir (CDV) have greatly increased activities in antiviral assays and in lethal animal models of poxvirus diseases. To see if ether lipid esters of CDV and (S)-HPMPA enhance antischistosomal activity, we tested their alkoxyalkyl esters using Schistosoma mansoni worm killing in vitro. Hexadecyloxypropyl (HDP)-cyclic-(S)-HPMPA and HDP-cyclic-CDV exhibited significant in vitro antischistosomal activities and may offer promise alone or in combination with praziquantel.


Antimicrobial Agents and Chemotherapy | 2011

Inhibition of HIV-1 by Octadecyloxyethyl Esters of (S)-[3-Hydroxy-2-(Phosphonomethoxy)Propyl] Nucleosides and Evaluation of Their Mechanism of Action

Wendy C. Magee; Nadejda Valiaeva; James R. Beadle; Douglas D. Richman; Karl Y. Hostetler; David H. Evans

ABSTRACT (S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine (HPMPC [cidofovir]) and (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]adenine (HPMPA) are potent inhibitors of a variety of DNA viruses. These drugs possess a 3′-hydroxyl equivalent which could support chain extension from an incorporated drug molecule. HPMPC and HPMPA were initially reported to lack activity against human immunodeficiency virus type 1 (HIV-1); more recent results have shown that the octadecyloxyethyl (ODE) and hexadecyloxypropyl (HDP) esters of HPMPA are potent inhibitors of the virus. We have synthesized the ODE esters of a series of (S)-[3-hydroxy-2-(phosphonomethoxy)propyl] (HPMP) nucleosides, including HPMPC, HPMP-guanine (HPMPG), HPMP-thymine (HPMPT), and HPMP-diaminopurine (HPMPDAP), as well as the ODE ester of the obligate chain terminator (S)-9-[3-methoxy-2-(phosphonomethoxy)-propyl]adenine (MPMPA). All compounds except ODE-HPMPT were inhibitors of HIV-1 replication at low nanomolar concentrations. These compounds were also inhibitors of the replication of HIV-1 variants that are resistant to various nucleoside reverse transcriptase (RT) inhibitors at concentrations several times lower than would be expected to be achieved in vivo. To investigate the mechanism of the antiviral activity, the active metabolites of HPMPC and HPMPA were studied for their effects on reactions catalyzed by HIV-1 RT. Incorporation of HPMPC and HPMPA into a DNA primer strand resulted in multiple inhibitory effects exerted on the enzyme and showed that neither compound acts as an absolute chain terminator. Further, inhibition of HIV-1 RT also occurred when these drugs were located in the template strand. These results indicate that HPMPC and HPMPA inhibit HIV-1 by a complex mechanism and suggest that this class of drugs has a broader spectrum of activity than previously shown.


Chemotherapy | 2010

Antiproliferative Effects of Octadecyloxyethyl 9-[2-(Phosphonomethoxy)Ethyl]Guanine against Me-180 Human Cervical Cancer Cells in vitro and in vivo

Nadejda Valiaeva; Julissa Trahan; Kathy A. Aldern; James R. Beadle; Karl Y. Hostetler

Background/Aims: 9-[2-(phosphonomethoxy)ethyl]guanine (PMEG) is one of the most active antiproliferative compounds in a series of acyclic nucleoside phosphonates and is active in intraperitoneal P388 tumors in mice. Methods: We synthesized octadecyloxyethyl (ODE) and hexadecyloxypropyl esters of PMEG and compared their antiproliferative activity with unmodified PMEG in primary human fibroblasts and CaSki, Me-180 and HeLa human cervical cancer cell lines in vitro. Results: ODE-PMEG had excellent antiproliferative activity in vitro in this panel of human cervical cancers. We compared the effects of ODE-PMEG and ODE-cidofovir (ODE-CDV) in a solid tumor model using Me-180 human cervical cancer cell lines in athymic nude mice. Intratumoral injection of 25 µg of ODE-PMEG or 100 µg of ODE-CDV daily for 21 days followed by observation for 20–35 days resulted in near-complete disappearance of measurable cervical cancers. Conclusion: ODE-PMEG may be suitable for local or topical treatment of cervical dysplasia.


Antiviral Research | 2018

Inhibition of adenovirus serotype 14 infection by octadecyloxyethyl esters of (S)-[(3-hydroxy-2-phosphonomethoxy)propyl]- nucleosides in vitro

Yohichi Kumaki; John D. Woolcott; Jason P. Roth; Tyler Z. Mclean; Donald F. Smee; Dale L. Barnard; Nadejda Valiaeva; James R. Beadle; Karl Y. Hostetler

Abstract On September 22, 2008, a physician on Prince of Wales Island, Alaska, notified the Alaska Department of Health and Social Services (ADHSS) of an unusually high number of adult patients with recently diagnosed pneumonia (n = 10), including three persons who required hospitalization and one who died. ADHSS and CDC conducted an investigation to determine the cause and distribution of the outbreak, identify risk factors for hospitalization, and implement control measures. This report summarizes the results of that investigation, which found that the outbreak was caused by adenovirus 14 (Ad14), an emerging adenovirus serotype in the United States that is associated with a higher rate of severe illness compared with other adenoviruses. Among the 46 cases identified in the outbreak from September 1 through October 27, 2008, the most frequently observed characteristics included the following: male (70%), Alaska Native (61%), underlying pulmonary disease (44%), aged > or = 65 years (26%), and current smoker (48%). Patients aged > or = 65 years had a fivefold increased risk for hospitalization. The most commonly reported symptoms were cough (100%), shortness of breath (87%), and fever (74%). Of the 11 hospitalized patients, three required intensive care, and one required mechanical ventilation. One death was reported. Ad14 isolates obtained during the outbreak were identical genetically to those in recent community‐acquired outbreaks in the United States which suggests the emergence of a new, and possibly more virulent Ad14 variant. Clinicians should consider Ad14 infection in the differential diagnosis for patients with community‐acquired pneumonia, particularly when unexplained clusters of severe respiratory infections are detected. HighlightsAdenovirus type 14 had been reported to cause severe and fatal pneumonia in rare cases in people of all ages.No antiviral compounds have yet been approved for the treatment of such adenovirus infections.Four nucleoside analogue compounds were evaluated against adenovirus type 14 and some other adenoviruses in vitro.All the ODE‐nucleoside analogues demonstrated antiviral activities in neutral red uptake and virus yield reduction assays.


Antiviral Research | 2006

Synthesis and antiviral evaluation of alkoxyalkyl esters of acyclic purine and pyrimidine nucleoside phosphonates against HIV-1 in vitro.

Nadejda Valiaeva; James R. Beadle; Kathy A. Aldern; Julissa Trahan; Karl Y. Hostetler


Bioorganic & Medicinal Chemistry | 2011

Synthesis and antiviral evaluation of 9-(S)-[3-alkoxy-2-(phosphonomethoxy)propyl]nucleoside alkoxyalkyl esters: inhibitors of hepatitis C virus and HIV-1 replication.

Nadejda Valiaeva; David L. Wyles; Robert T. Schooley; Julia B. Hwu; James R. Beadle; Mark N. Prichard; Karl Y. Hostetler


Molecular Vision | 2012

A novel cytarabine crystalline lipid prodrug: hexadecyloxypropyl cytarabine 3',5'-cyclic monophosphate for proliferative vitreoretinopathy.

Jae Suk Kim; James R. Beadle; William R. Freeman; Karl Y. Hostetler; Kathrin Hartmann; Nadejda Valiaeva; Igor Kozak; Laura Conner; Julissa Trahan; Kathy A. Aldern; Lingyun Cheng

Collaboration


Dive into the Nadejda Valiaeva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julissa Trahan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark N. Prichard

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Caroll B. Hartline

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

David L. Wyles

Denver Health Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge