Nadereh Jafari
Northwestern University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nadereh Jafari.
BMC Bioinformatics | 2010
Pan Du; Xiao Zhang; Chiang Ching Huang; Nadereh Jafari; Warren A. Kibbe; Lifang Hou; Simon Lin
BackgroundHigh-throughput profiling of DNA methylation status of CpG islands is crucial to understand the epigenetic regulation of genes. The microarray-based Infinium methylation assay by Illumina is one platform for low-cost high-throughput methylation profiling. Both Beta-value and M-value statistics have been used as metrics to measure methylation levels. However, there are no detailed studies of their relations and their strengths and limitations.ResultsWe demonstrate that the relationship between the Beta-value and M-value methods is a Logit transformation, and show that the Beta-value method has severe heteroscedasticity for highly methylated or unmethylated CpG sites. In order to evaluate the performance of the Beta-value and M-value methods for identifying differentially methylated CpG sites, we designed a methylation titration experiment. The evaluation results show that the M-value method provides much better performance in terms of Detection Rate (DR) and True Positive Rate (TPR) for both highly methylated and unmethylated CpG sites. Imposing a minimum threshold of difference can improve the performance of the M-value method but not the Beta-value method. We also provide guidance for how to select the threshold of methylation differences.ConclusionsThe Beta-value has a more intuitive biological interpretation, but the M-value is more statistically valid for the differential analysis of methylation levels. Therefore, we recommend using the M-value method for conducting differential methylation analysis and including the Beta-value statistics when reporting the results to investigators.
Nature Biotechnology | 2014
Sheng Li; Scott Tighe; Charles M. Nicolet; Deborah S. Grove; Shawn Levy; William G. Farmerie; Agnes Viale; Chris L. Wright; Peter A. Schweitzer; Yuan Gao; Dewey Kim; Joe Boland; Belynda Hicks; Ryan Kim; Sagar Chhangawala; Nadereh Jafari; Nalini Raghavachari; Jorge Gandara; Natàlia Garcia-Reyero; Cynthia Hendrickson; David Roberson; Jeffrey Rosenfeld; Todd Smith; Jason G. Underwood; May Wang; Paul Zumbo; Don Baldwin; George Grills; Christopher E. Mason
High-throughput RNA sequencing (RNA-seq) greatly expands the potential for genomics discoveries, but the wide variety of platforms, protocols and performance capabilitites has created the need for comprehensive reference data. Here we describe the Association of Biomolecular Resource Facilities next-generation sequencing (ABRF-NGS) study on RNA-seq. We carried out replicate experiments across 15 laboratory sites using reference RNA standards to test four protocols (poly-A–selected, ribo-depleted, size-selected and degraded) on five sequencing platforms (Illumina HiSeq, Life Technologies PGM and Proton, Pacific Biosciences RS and Roche 454). The results show high intraplatform (Spearman rank R > 0.86) and inter-platform (R > 0.83) concordance for expression measures across the deep-count platforms, but highly variable efficiency and cost for splice junction and variant detection between all platforms. For intact RNA, gene expression profiles from rRNA-depletion and poly-A enrichment are similar. In addition, rRNA depletion enables effective analysis of degraded RNA samples. This study provides a broad foundation for cross-platform standardization, evaluation and improvement of RNA-seq.
Nature Structural & Molecular Biology | 2010
João Trindade Marques; Kevin Kim; Pei Hsuan Wu; Trevis M. Alleyne; Nadereh Jafari; Richard W. Carthew
In Drosophila melanogaster, the small interfering RNA (siRNA) pathway is triggered by exogenous double-stranded RNA (dsRNA) or upon viral infection. This pathway requires Dicer-2 (Dcr-2) in association with a dsRNA-binding protein (dsRBP) called R2D2. A potentially distinct siRNA pathway, which requires Dcr-2 in association with a different dsRBP, called Loquacious (Loqs), is activated by endogenous dsRNA derived from transposons, structured loci and overlapping transcripts. Here we show that different sources of dsRNA enter a common siRNA pathway that requires R2D2 and Loqs. R2D2 and loqs mutants show impaired silencing triggered by injection of exogenous dsRNA or by artificial and natural expression of endogenous dsRNA. In addition, we show that these dsRBPs function sequentially and nonredundantly in collaboration with Dcr-2. Loqs is primarily required for dsRNA processing, whereas R2D2 is essential for the subsequent loading of siRNAs into effector Ago–RISC complexes.
Cancer Cell | 2015
Amy L. Walz; Ariadne H. A. G. Ooms; Samantha Gadd; Daniela S. Gerhard; Malcolm A. Smith; Jamie M. GuidryAuvil; Daoud Meerzaman; Qing Rong Chen; Chih Hao Hsu; Chunhua Yan; Cu Nguyen; Ying Hu; Reanne Bowlby; Denise Brooks; Yussanne Ma; Andrew J. Mungall; Richard A. Moore; Jacqueline E. Schein; Marco A. Marra; Vicki Huff; Jeffrey S. Dome; Yueh Yun Chi; Charles G. Mullighan; Jing Ma; David A. Wheeler; Oliver A. Hampton; Nadereh Jafari; Nicole Ross; Julie M. Gastier-Foster; Elizabeth J. Perlman
We report the most common single-nucleotide substitution/deletion mutations in favorable histology Wilms tumors (FHWTs) to occur within SIX1/2 (7% of 534 tumors) and microRNA processing genes (miRNAPGs) DGCR8 and DROSHA (15% of 534 tumors). Comprehensive analysis of 77 FHWTs indicates that tumors with SIX1/2 and/or miRNAPG mutations show a pre-induction metanephric mesenchyme gene expression pattern and are significantly associated with both perilobar nephrogenic rests and 11p15 imprinting aberrations. Significantly decreased expression of mature Let-7a and the miR-200 family (responsible for mesenchymal-to-epithelial transition) in miRNAPG mutant tumors is associated with an undifferentiated blastemal histology. The combination of SIX and miRNAPG mutations in the same tumor is associated with evidence of RAS activation and a higher rate of relapse and death.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Jovanka T. Koo; Trevis M. Alleyne; Chelsea A. Schiano; Nadereh Jafari; Wyndham W. Lathem
A major class of bacterial small, noncoding RNAs (sRNAs) acts by base-pairing with mRNAs to alter the translation from and/or stability of the transcript. Our laboratory has shown that Hfq, the chaperone that mediates the interaction of many sRNAs with their targets, is required for the virulence of the enteropathogen Yersinia pseudotuberculosis. This finding suggests that sRNAs play a critical role in the regulation of virulence in this pathogen, but these sRNAs are not known. Using a deep sequencing approach, we identified the global set of sRNAs expressed in vitro by Y. pseudotuberculosis. Sequencing of RNA libraries from bacteria grown at 26 °C and 37 °C resulted in the identification of 150 unannotated sRNAs. The majority of these sRNAs are Yersinia specific, without orthologs in either Escherichia coli or Salmonella typhimurium. Six sRNAs are Y. pseudotuberculosis specific and are absent from the genome of the closely related species Yersinia pestis. We found that the expression of many sRNAs conserved between Y. pseudotuberculosis and Y. pestis differs in both timing and dependence on Hfq, suggesting evolutionary changes in posttranscriptional regulation between these species. Deletion of multiple sRNAs in Y. pseudotuberculosis leads to attenuation of the pathogen in a mouse model of yersiniosis, as does the inactivation in Y. pestis of a conserved, Yersinia-specific sRNA in a mouse model of pneumonic plague. Finally, we determined the regulon controlled by one of these sRNAs, revealing potential virulence determinants in Y. pseudotuberculosis that are regulated in a posttranscriptional manner.
Stroke | 2009
Changbin Shi; Issam A. Awad; Nadereh Jafari; Simon Lin; Pan Du; Ziad A. Hage; Robert Shenkar; Christopher C. Getch; Markus Bredel; H. Hunt Batjer; Bernard R. Bendok
Background and Purpose— The pathogenesis of intracranial aneurysms (IAs) remains elusive. Most studies have focused on individual genes, or a few interrelated genes or products, at a time in human IA. However, a broad view of pathologic mechanisms has not been investigated by identifying pathogenic genes and their interaction in networks. Our study aimed to analyze global gene expression patterns in the IA wall. Methods— To our knowledge, our group was the first to perform Illumina microarray analysis on human IA via comparison of aneurysm wall and superficial temporal artery tissues from 6 consecutive patients. We adopted stringent statistical criteria to the individual genes; genes with a false discovery rate <0.01 and >2-fold change were selected as differentially expressed. To identify the overrepresented biologic pathways with the differentially expressed genes, we performed hypergeometric testing of the genes selected by relaxed criteria of P<0.01 and fold change >1.5. Results— There are 326 distinct differentially expressed genes between IA and superficial temporal artery tissues (>2-fold change) with a false discovery rate <0.01. Analysis of the Kyoto Encyclopedia of Genes and Genomes pathways revealed the most impacted functional pathways: focal adhesion, extracellular matrix receptor interaction, and cell communication. Analysis of the Gene Ontology also supported the involvement of another 2 potentially important pathways: inflammatory response and apoptosis. Conclusions— The differentially expressed genes in the aneurysm wall may shed light on aneurysm pathobiology and provide novel targets for therapeutic intervention. These data will help generate hypotheses for future studies.
The Journal of Clinical Endocrinology and Metabolism | 2013
Priscilla Mutharasan; Eugene Galdones; Beatriz Peñalver Bernabé; Obed A. Garcia; Nadereh Jafari; Lonnie D. Shea; Teresa K. Woodruff; Richard S. Legro; Andrea Dunaif; Margrit Urbanek
CONTEXT A previous genome-wide association study in Chinese women with polycystic ovary syndrome (PCOS) identified a region on chromosome 2p16.3 encoding the LH/choriogonadotropin receptor (LHCGR) and FSH receptor (FSHR) genes as a reproducible PCOS susceptibility locus. OBJECTIVE The objective of the study was to determine the role of the LHCGR and/or FSHR gene in the etiology of PCOS in women of European ancestry. DESIGN This was a genetic association study in a European ancestry cohort of women with PCOS. SETTING The study was conducted at an academic medical center. PARTICIPANTS Participants in the study included 905 women with PCOS diagnosed by National Institutes of Health criteria and 956 control women. INTERVENTION We genotyped 94 haplotype-tagging single-nucleotide polymorphisms and two coding single-nucleotide polymorphisms mapping to the coding region of LHCGR and FSHR plus 20 kb upstream and downstream of the genes and test for association in the case control cohort and for association with nine quantitative traits in the women with PCOS. RESULTS We found strong evidence for an association of PCOS with rs7562215 (P = 0.0037) and rs10495960 (P = 0.0046). Although the marker with the strongest association in the Chinese PCOS genome-wide association study (rs13405728) was not informative in the European populations, we identified and genotyped three markers (rs35960650, rs2956355, and rs7562879) within 5 kb of rs13405728. Of these, rs7562879 was nominally associated with PCOS (P = 0.020). The strongest evidence for association mapping to FSHR was observed with rs1922476 (P = 0.0053). Furthermore, markers with the FSHR gene region were associated with FSH levels in women with PCOS. CONCLUSIONS Fine mapping of the chromosome 2p16.3 Chinese PCOS susceptibility locus in a European ancestry cohort provides evidence for association with two independent loci and PCOS. The gene products LHCGR and FSHR therefore are likely to be important in the etiology of PCOS, regardless of ethnicity.
PLOS Genetics | 2014
Matthew T. Dyson; Damian Roqueiro; Diana Monsivais; C. Mutlu Ercan; Mary Ellen Pavone; David C. Brooks; Toshiyuki Kakinuma; Masanori Ono; Nadereh Jafari; Yang Dai; Serdar E. Bulun
Endometriosis is a gynecological disease defined by the extrauterine growth of endometrial-like cells that cause chronic pain and infertility. The disease is limited to primates that exhibit spontaneous decidualization, and diseased cells are characterized by significant defects in the steroid-dependent genetic pathways that typify this process. Altered DNA methylation may underlie these defects, but few regions with differential methylation have been implicated in the disease. We mapped genome-wide differences in DNA methylation between healthy human endometrial and endometriotic stromal cells and correlated this with gene expression using an interaction analysis strategy. We identified 42,248 differentially methylated CpGs in endometriosis compared to healthy cells. These extensive differences were not unidirectional, but were focused intragenically and at sites distal to classic CpG islands where methylation status was typically negatively correlated with gene expression. Significant differences in methylation were mapped to 403 genes, which included a disproportionally large number of transcription factors. Furthermore, many of these genes are implicated in the pathology of endometriosis and decidualization. Our results tremendously improve the scope and resolution of differential methylation affecting the HOX gene clusters, nuclear receptor genes, and intriguingly the GATA family of transcription factors. Functional analysis of the GATA family revealed that GATA2 regulates key genes necessary for the hormone-driven differentiation of healthy stromal cells, but is hypermethylated and repressed in endometriotic cells. GATA6, which is hypomethylated and abundant in endometriotic cells, potently blocked hormone sensitivity, repressed GATA2, and induced markers of endometriosis when expressed in healthy endometrial cells. The unique epigenetic fingerprint in endometriosis suggests DNA methylation is an integral component of the disease, and identifies a novel role for the GATA family as key regulators of uterine physiology–aberrant DNA methylation in endometriotic cells correlates with a shift in GATA isoform expression that facilitates progesterone resistance and disease progression.
PLOS Pathogens | 2013
João Trindade Marques; Ji Ping Wang; Xiaohong Wang; Karla Pollyanna Vieira de Oliveira; Catherine Gao; Eric Roberto Guimarães Rocha Aguiar; Nadereh Jafari; Richard W. Carthew
In Drosophila, post-transcriptional gene silencing occurs when exogenous or endogenous double stranded RNA (dsRNA) is processed into small interfering RNAs (siRNAs) by Dicer-2 (Dcr-2) in association with a dsRNA-binding protein (dsRBP) cofactor called Loquacious (Loqs-PD). siRNAs are then loaded onto Argonaute-2 (Ago2) by the action of Dcr-2 with another dsRBP cofactor called R2D2. Loaded Ago2 executes the destruction of target RNAs that have sequence complementarity to siRNAs. Although Dcr-2, R2D2, and Ago2 are essential for innate antiviral defense, the mechanism of virus-derived siRNA (vsiRNA) biogenesis and viral target inhibition remains unclear. Here, we characterize the response mechanism mediated by siRNAs against two different RNA viruses that infect Drosophila. In both cases, we show that vsiRNAs are generated by Dcr-2 processing of dsRNA formed during viral genome replication and, to a lesser extent, viral transcription. These vsiRNAs seem to preferentially target viral polyadenylated RNA to inhibit viral replication. Loqs-PD is completely dispensable for silencing of the viruses, in contrast to its role in silencing endogenous targets. Biogenesis of vsiRNAs is independent of both Loqs-PD and R2D2. R2D2, however, is required for sorting and loading of vsiRNAs onto Ago2 and inhibition of viral RNA expression. Direct injection of viral RNA into Drosophila results in replication that is also independent of Loqs-PD. This suggests that triggering of the antiviral pathway is not related to viral mode of entry but recognition of intrinsic features of virus RNA. Our results indicate the existence of a vsiRNA pathway that is separate from the endogenous siRNA pathway and is specifically triggered by virus RNA. We speculate that this unique framework might be necessary for a prompt and efficient antiviral response.
Hepatology | 2011
Liang Bai; Yuzhi Jia; Navin Viswakarma; Jiansheng Huang; Aurore Vluggens; Nathan E. Wolins; Nadereh Jafari; M. Sambasiva Rao; Jayme Borensztajn; Gongshe Yang; Janardan K. Reddy
Peroxisome proliferator‐activated receptor‐γ (PPARγ), a nuclear receptor, when overexpressed in liver stimulates the induction of adipocyte‐specific and lipogenesis‐related genes and causes hepatic steatosis. We report here that Mediator 1 (MED1; also known as PBP or TRAP220), a key subunit of the Mediator complex, is required for high‐fat diet–induced hepatic steatosis as well as PPARγ‐stimulated adipogenic hepatic steatosis. Mediator forms the bridge between transcriptional activators and RNA polymerase II. MED1 interacts with nuclear receptors such as PPARγ and other transcriptional activators. Liver‐specific MED1 knockout (MED1ΔLiv) mice, when fed a high‐fat (60% kcal fat) diet for up to 4 months failed to develop fatty liver. Similarly, MED1ΔLiv mice injected with adenovirus‐PPARγ (Ad/PPARγ) by tail vein also did not develop fatty liver, whereas mice with MED1 (MED1fl/fl) fed a high‐fat diet or injected with Ad/PPARγ developed severe hepatic steatosis. Gene expression profiling and northern blot analyses of Ad/PPARγ–injected mouse livers showed impaired induction in MED1ΔLiv mouse liver of adipogenic markers, such as aP2, adipsin, adiponectin, and lipid droplet‐associated genes, including caveolin‐1, CideA, S3‐12, and others. These adipocyte‐specific and lipogenesis‐related genes are strongly induced in MED1fl/fl mouse liver in response to Ad/PPARγ. Re‐expression of MED1 using adenovirally‐driven MED1 (Ad/MED1) in MED1ΔLiv mouse liver restored PPARγ‐stimulated hepatic adipogenic response. These studies also demonstrate that disruption of genes encoding other coactivators such as SRC‐1, PRIC285, PRIP, and PIMT had no effect on hepatic adipogenesis induced by PPARγ overexpression. Conclusion: We conclude that transcription coactivator MED1 is required for high‐fat diet–induced and PPARγ‐stimulated fatty liver development, which suggests that MED1 may be considered a potential therapeutic target for hepatic steatosis. (HEPATOLOGY 2011;)