Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nadia Lombardi is active.

Publication


Featured researches published by Nadia Lombardi.


The Open Mycology Journal | 2014

Trichoderma-based Products and their Widespread Use in Agriculture

Sheridan L. Woo; Michelina Ruocco; Francesco Vinale; Marco Nigro; Roberta Marra; Nadia Lombardi; Alberto Pascale; Stefania Lanzuise; Gelsomina Manganiello; Matteo Lorito

Governing bodies throughout the world, particularly in Europe, are now implementing legislative mandates with the objective of decreasing dependence on pesticides in agriculture to increase consumer and environmental safety. In order to reduce the risks associated with pesticide applications and reduce dependency on their use, Directives will promote low pesticide-input by implementing integrated pest management (IPM), and provide the means to establish the necessary conditions and measures to employ these practices, as well as to ensure security of commercial products. One approach includes the use of biological control agents and their products as alternatives to synthetic agro-chemicals. Trichoderma spp. are widely studied fungi and are among the most commonly used microbial biological control agents (MBCAs) in agriculture. They are presently marketed as bio-pesticides, biofertilizers, growth enhancers and stimulants of natural resistance. The efficacy of this fungus can be attributed to their ability to protect plants, enhance vegetative growth and contain pathogen populations under numerous agricultural conditions, as well as to act as soil amendments/inoculants for improvement of nutrient ability, decomposition and biodegradation. The living fungal spores (active substance) are incorporated in various formulations, both traditional and innovative, for applications as foliar sprays, pre-planting applications to seed or propagation material, post-pruning treatments, incorporation in the soil during seeding or transplant, watering by irrigation or applied as a root drench or dip. Trichoderma-based preparations are marketed worldwide and used for crop protection of various plant pathogens or increase the plant growth and productivity in diverse cultivated environments such as fields, greenhouses, nurseries; in the production of a variety of horticultural, fruits, trees and ornamental crops. A survey was conducted of Trichoderma-containing products found on the international market to obtain an overall perspective of the: 1) geographical distribution, 2) product composition and identity of Trichoderma species selected, 3) contents combined with Trichoderma in the products - other microbial species or substances in the mix, 4) number of products available globally and geographically, 5) number of products registered or having use specifications, 6) product formulations and applications, 7) manufacturer claims - target use, target pests, product type and effects of applications. The largest distribution of Trichoderma bioproducts is found in Asia, succeeded by Europe, South- Central America and North America. The majority of the labels indicated fungicidal properties, but only 38% of the marketed merchandise are registered. Ten Trichoderma species are specifically indicated, but many labels indicate a generic Trichoderma sp. or spp. mix in the list of ingredients. The most common formulation is a wettable powder, followed by granules. Generally, Trichoderma are applied to the seed or propagation material at the time of planting, then the secondary use is during plant development. On the whole, the target use is for the control of soilborne fungal pathogens such as Rhizoctonia, Pythium and Sclerotinia, and a few foliar pathogens such as Botrytis and Alternaria; whereas the minor use indication is for plant growth promotion. The use of Trichoderma-based biological products will have an important role in agricultural production of the future, in light of changing worldwide perspectives by consumers and governing bodies.


The Open Mycology Journal | 2014

Trichoderma Secondary Metabolites Active on Plants and FungalPathogens

Francesco Vinale; Krishnapillai Sivasithamparam; Emilio L. Ghisalberti; Sheridan L. Woo; Marco Nigro; Roberta Marra; Nadia Lombardi; Alberto Pascale; Michelina Ruocco; Stefania Lanzuise; Gelsomina Manganiello; Matteo Lorito

Beneficial microbes typically produce bioactive molecules that can affect the interactions of plants with their pathogens. Many secondary metabolites may also have antibiotic properties, which enable the producing microbe to inhibit and/or kill other microorganisms i.e. competing for a nutritional niche. Indeed, some of these compounds have been found to play an important role in the biocontrol of plant diseases by various beneficial microbes used world-wide for crop protection and bio-fertilization. In addition to direct toxic activity against plant pathogens, biocontrol-related metabolites may also increase disease resistance by triggering systemic plant defence activity, and/or enhance root and shoot growth. Fungi belonging to the Trichoderma genus are well known producers of secondary metabolites with a direct activity against phytopathogens and compounds that substantially affect the metabolism of the plant. The widescale application of selected metabolites to induce host resistance and/or to promote crop yield may become a reality in the near future and represents a powerful tool for the implementation of IPM strategies.


Molecular Breeding | 2013

Quantitative trait loci pyramiding for fruit quality traits in tomato

Adriana Sacco; Antonio Di Matteo; Nadia Lombardi; Nikita Trotta; Biancavaleria Punzo; Angela Mari; Amalia Barone

Fruit quality is a major focus for most conventional and innovative tomato breeding strategies, with particular attention being paid to fruit antioxidant compounds. Tomatoes represent a major contribution to dietary nutrition worldwide and a reservoir of diverse antioxidant molecules. In a previous study, we identified two Solanum pennellii introgression lines (IL7-3 and IL12-4) harbouring quantitative trait loci (QTL) that increase the content of ascorbic acid (AsA), phenols and soluble solids (degrees Brix; °Bx) in tomato fruit. The purpose of the present work was to pyramid into cultivated varieties the selected QTL for enhanced antioxidant and °Bx content. To better understand the genetic architecture of each QTL, the two ILs were crossed to the recurrent parent M82 (ILH7-3 and ILH12-4) and between them (ILH7-3+12-4). F1 hybrids (ILH7-3+12-4) were then selfed up to obtain F3 progenies in order to stabilize the favourable traits at the homozygous condition. Species-specific molecular markers were identified for each introgressed region and allowed us to select four F2 genotypes carrying both introgressions at the homozygous condition. The F3 double homozygous plants displayed AsA, total phenols and °Bx content significantly higher than M82. Therefore, they may represent suitable genetic material for breeding schemes aiming to increase antioxidant content in tomato fruit.


Molecular Plant-microbe Interactions | 2015

Multiple Roles and Effects of a Novel Trichoderma Hydrophobin

Michelina Ruocco; Stefania Lanzuise; Nadia Lombardi; Sheridan L. Woo; Francesco Vinale; Roberta Marra; Rosaria Varlese; Gelsomina Manganiello; Alberto Pascale; Valeria Scala; David Turrà; Felice Scala; Matteo Lorito

Fungi belonging to the genus Trichoderma are among the most active and ecologically successful microbes found in natural environments, because they are able to use a variety of substrates and affect the growth of other microbes and virtually any plant species. We isolated and characterized a novel type II hydrophobin secreted by the biocontrol strain MK1 of Trichoderma longibrachiatum. The corresponding gene (Hytlo1) has a multiple role in the Trichoderma-plant-pathogen three-way interaction, while the purified protein displayed a direct antifungal as well as a microbe-associated molecular pattern and a plant growth promotion (PGP) activity. Leaf infiltration with the hydrophobin systemically increased resistance to pathogens and activated defense-related responses involving reactive oxygen species, superoxide dismutase, oxylipin, phytoalexin, and pathogenesis-related protein formation or activity. The hydrophobin was found to enhance development of a variety of plants when applied at very low doses. It particularly stimulated root formation and growth, as demonstrated also by transient expression of the encoding gene in tobacco and tomato. Targeted knock-out of Hytlo1 significantly reduced both antagonistic and PGP effect of the wild-type strain. We conclude that this protein represents a clear example of a molecular factor developed by Trichoderma spp. to establish a mutually beneficial interaction with the colonized plant.


Molecules | 2014

A novel fungal metabolite with beneficial properties for agricultural applications.

Francesco Vinale; Gelsomina Manganiello; Marco Nigro; Pierluigi Mazzei; Alessandro Piccolo; Alberto Pascale; Michelina Ruocco; Roberta Marra; Nadia Lombardi; Stefania Lanzuise; Rosaria Varlese; Pierpaolo Cavallo; Matteo Lorito; Sheridan L. Woo

Trichoderma are ubiquitous soil fungi that include species widely used as biocontrol agents in agriculture. Many isolates are known to secrete several secondary metabolites with different biological activities towards plants and other microbes. Harzianic acid (HA) is a T. harzianum metabolite able to promote plant growth and strongly bind iron. In this work, we isolated from the culture filtrate of a T. harzianum strain a new metabolite, named isoharzianic acid (iso-HA), a stereoisomer of HA. The structure and absolute configuration of this compound has been determined by spectroscopic methods, including UV-Vis, MS, 1D and 2D NMR analyses. In vitro applications of iso-HA inhibited the mycelium radial growth of Sclerotinia sclerotiorum and Rhizoctonia solani. Moreover, iso HA improved the germination of tomato seeds and induced disease resistance. HPLC-DAD experiments showed that the production of HA and iso HA was affected by the presence of plant tissue in the liquid medium. In particular, tomato tissue elicited the production of HA but negatively modulated the biosynthesis of its analogue iso-HA, suggesting that different forms of the same Trichoderma secondary metabolite have specific roles in the molecular mechanism regulating the Trichoderma plant interaction.


Journal of Plant Physiology | 2014

Trichoderma spp. alleviate phytotoxicity in lettuce plants (Lactuca sativa L.) irrigated with arsenic-contaminated water

Antonio G. Caporale; Alessia Sommella; Matteo Lorito; Nadia Lombardi; Shah M.G.G. Azam; Massimo Pigna; Michelina Ruocco

The influence of two strains of Trichoderma (T. harzianum strain T22 and T. atroviride strain P1) on the growth of lettuce plants (Lactuca sativa L.) irrigated with As-contaminated water, and their effect on the uptake and accumulation of the contaminant in the plant roots and leaves, were studied. Accumulation of this non-essential element occurred mainly into the root system and reduced both biomass development and net photosynthesis rate (while altering the plant P status). Plant growth-promoting fungi (PGPF) of both Trichoderma species alleviated, at least in part, the phytotoxicity of As, essentially by decreasing its accumulation in the tissues and enhancing plant growth, P status and net photosynthesis rate. Our results indicate that inoculation of lettuce with selected Trichoderma strains may be helpful, beside the classical biocontrol application, in alleviating abiotic stresses such as that caused by irrigation with As-contaminated water, and in reducing the concentration of this metalloid in the edible part of the plant.


Natural Product Research | 2017

Secondary metabolites from the endophytic fungus Talaromyces pinophilus

Francesco Vinale; Rosario Nicoletti; F. Lacatena; Roberta Marra; A. Sacco; Nadia Lombardi; Giada d’Errico; Maria Cristina Digilio; Matteo Lorito; Sheridan L. Woo

Abstract Endophytic fungi have a great influence on plant health and growth, and are an important source of bioactive natural compounds. Organic extracts obtained from the culture filtrate of an endophytic strain of Talaromyces pinophilus isolated from strawberry tree (Arbutus unedo) were studied. Metabolomic analysis revealed the presence of three bioactive metabolites, the siderophore ferrirubin, the platelet-aggregation inhibitor herquline B and the antibiotic 3-O-methylfunicone. The latter was the major metabolite produced by this strain and displayed toxic effects against the pea aphid Acyrthosiphon pisum (Homoptera Aphidiidae). This toxicity represents an additional indication that the widespread endophytic occurrence of T. pinophilus may be related to a possible role in defensive mutualism. Moreover, the toxic activity on aphids could promote further study on 3-O-methylfunicone, or its derivatives, as an alternative to synthetic chemicals in agriculture.


Frontiers in Plant Science | 2017

Biochar As Plant Growth Promoter: Better Off Alone or Mixed with Organic Amendments?

Giuliano Bonanomi; Francesca Ippolito; Gaspare Cesarano; Bruno Nanni; Nadia Lombardi; Angelo Rita; Antonio Saracino; Felice Scala

Biochar is nowadays largely used as a soil amendment and is commercialized worldwide. However, in temperate agro-ecosystems the beneficial effect of biochar on crop productivity is limited, with several studies reporting negative crop responses. In this work, we studied the effect of 10 biochar and 9 not pyrogenic organic amendments (NPOA), using pure and in all possible combinations on lettuce growth (Lactuca sativa). Organic materials were characterized by 13C-CPMAS NMR spectroscopy and elemental analysis (pH, EC, C, N, C/N and H/C ratios). Pure biochars and NPOAs have variable effects, ranging from inhibition to strong stimulation on lettuce growth. For NPOAs, major inhibitory effects were found with N poor materials characterized by high C/N and H/C ratio. Among pure biochars, instead, those having a low H/C ratio seem to be the best for promoting plant growth. When biochars and organic amendments were mixed, non-additive interactions, either synergistic or antagonistic, were prevalent. However, the mixture effect on plant growth was mainly dependent on the chemical quality of NPOAs, while biochar chemistry played a secondary role. Synergisms were prevalent when N rich and lignin poor materials were mixed with biochar. On the contrary, antagonistic interactions occurred when leaf litter or woody materials were mixed with biochar. Further research is needed to identify the mechanisms behind the observed non-additive effects and to develop biochar-organic amendment combinations that maximize plant productivity in different agricultural systems.


Natural Product Research | 2016

Cremenolide, a new antifungal, 10-member lactone from Trichoderma cremeum with plant growth promotion activity

Francesco Vinale; Judyta Strakowska; Pierluigi Mazzei; Alessandro Piccolo; Roberta Marra; Nadia Lombardi; Gelsomina Manganiello; Alberto Pascale; Sheridan L. Woo; Matteo Lorito

Abstract Trichoderma based products are considered an alternative to synthetic pesticides and fertilizers. These Trichoderma spp. are among the most studied and applied fungal BCAs in industry and agriculture and are known to secrete several secondary metabolites with different biological activities. The analysis of metabolic profiles (the ‘metabolome’) of Trichoderma species is complex because of the wide range of compounds produced and the molecular activities identified, including the recently determined role in the activation of plant resistance to biotic and abiotic stresses and growth promotion. A new 10-member lactone, but-2-enoic acid 7-acetoxy-6-hydroxy-2-methyl-10-oxo-5,6,7,8,9,10-hexahydro-2H-oxecin-5-yl ester, named cremenolide (1), has been isolated from culture filtrates of Trichoderma cremeum. The structure of cremenolide was determined by spectroscopic methods, including UV, MS, and 1D and 2D NMR analyses. In vitro tests showed that the purified compound inhibited the radial mycelium growth of Fusarium oxysporum, Botrytis cinerea and Rhizoctonia solani, and exerted a significant promotion of growth of tomato seedlings.


Scientific Reports | 2017

Litter chemistry explains contrasting feeding preferences of bacteria, fungi, and higher plants

Giuliano Bonanomi; Gaspare Cesarano; Nadia Lombardi; Riccardo Motti; Felice Scala; Stefano Mazzoleni; Guido Incerti

Litter decomposition provides a continuous flow of organic carbon and nutrients that affects plant development and the structure of decomposer communities. Aim of this study was to distinguish the feeding preferences of microbes and plants in relation to litter chemistry. We characterized 36 litter types by 13C-CPMAS NMR spectroscopy and tested these materials on 6 bacteria, 6 fungi, and 14 target plants. Undecomposed litter acted as a carbon source for most of the saprophytic microbes, although with a large variability across litter types, severely inhibiting root growth. An opposite response was found for aged litter that largely inhibited microbial growth, but had neutral or stimulatory effects on root proliferation. 13C-CPMAS NMR revealed that restricted resonance intervals within the alkyl C, methoxyl C, O-alkyl C and di-O-alkyl C spectral regions are crucial for understanding litter effects. Root growth, in contrast to microbes, was negatively affected by labile C sources but positively associated with signals related to plant tissue lignification. Our study showed that plant litter has specific and contrasting effects on bacteria, fungi and higher plants, highlighting that, in order to understand the effects of plant detritus on ecosystem structure and functionality, different microbial food web components should be simultaneously investigated.

Collaboration


Dive into the Nadia Lombardi's collaboration.

Top Co-Authors

Avatar

Sheridan L. Woo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Matteo Lorito

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Roberta Marra

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Alberto Pascale

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gelsomina Manganiello

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Stefania Lanzuise

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Felice Scala

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge