Nadia Ponts
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nadia Ponts.
PLOS ONE | 2008
Jacques Prudhomme; Eric McDaniel; Nadia Ponts; Stéphane Bertani; William Fenical; Paul A. Jensen; Karine G. Le Roch
Background Malaria continues to be a devastating parasitic disease that causes the death of 2 million individuals annually. The increase in multi-drug resistance together with the absence of an efficient vaccine hastens the need for speedy and comprehensive antimalarial drug discovery and development. Throughout history, traditional herbal remedies or natural products have been a reliable source of antimalarial agents, e.g. quinine and artemisinin. Today, one emerging source of small molecule drug leads is the worlds oceans. Included among the source of marine natural products are marine microorganisms such as the recently described actinomycete. Members of the genus Salinispora have yielded a wealth of new secondary metabolites including salinosporamide A, a molecule currently advancing through clinical trials as an anticancer agent. Because of the biological activity of metabolites being isolated from marine microorganisms, our group became interested in exploring the potential efficacy of these compounds against the malaria parasite. Methods We screened 80 bacterial crude extracts for their activity against malaria growth. We established that the pure compound, salinosporamide A, produced by the marine actinomycete, Salinispora tropica, shows strong inhibitory activity against the erythrocytic stages of the parasite cycle. Biochemical experiments support the likely inhibition of the parasite 20S proteasome. Crystal structure modeling of salinosporamide A and the parasite catalytic 20S subunit further confirm this hypothesis. Ultimately we showed that salinosporamide A protected mice against deadly malaria infection when administered at an extremely low dosage. Conclusion These findings underline the potential of secondary metabolites, derived from marine microorganisms, to inhibit Plasmodium growth. More specifically, we highlight the effect of proteasome inhibitors such as salinosporamide A on in vitro and in vivo parasite development. Salinosporamide A (NPI-0052) now being advanced to phase I trials for the treatment of refractory multiple myeloma will need to be further explored to evaluate the safety profile for its use against malaria.
Genome Research | 2010
Nadia Ponts; Elena Yavorska Harris; Jacques Prudhomme; Ivan Wick; Colleen Eckhardt-Ludka; Glenn R. Hicks; Gary Hardiman; Stefano Lonardi; Karine G. Le Roch
In eukaryotic cells, chromatin reorganizes within promoters of active genes to allow the transcription machinery and various transcription factors to access DNA. In this model, promoter-specific transcription factors bind DNA to initiate the production of mRNA in a tightly regulated manner. In the case of the human malaria parasite, Plasmodium falciparum, specific transcription factors are apparently underrepresented with regards to the size of the genome, and mechanisms underlying transcriptional regulation are controversial. Here, we investigate the modulation of DNA accessibility by chromatin remodeling during the parasite infection cycle. We have generated genome-wide maps of nucleosome occupancy across the parasite erythrocytic cycle using two complementary assays--the formaldehyde-assisted isolation of regulatory elements to extract protein-free DNA (FAIRE) and the MNase-mediated purification of mononucleosomes to extract histone-bound DNA (MAINE), both techniques being coupled to high-throughput sequencing. We show that chromatin architecture undergoes drastic upheavals throughout the parasites cycle, contrasting with targeted chromatin reorganization usually observed in eukaryotes. Chromatin loosens after the invasion of the red blood cell and then repacks prior to the next cycle. Changes in nucleosome occupancy within promoter regions follow this genome-wide pattern, with a few exceptions such as the var genes involved in virulence and genes expressed at early stages of the cycle. We postulate that chromatin structure and nucleosome turnover control massive transcription during the erythrocytic cycle. Our results demonstrate that the processes driving gene expression in Plasmodium challenge the classical eukaryotic model of transcriptional regulation occurring mostly at the transcription initiation level.
Genome Biology | 2013
Evelien M. Bunnik; Duk-Won D. Chung; Michael Hamilton; Nadia Ponts; Anita Saraf; Jacques Prudhomme; Laurence Florens; Karine G. Le Roch
BackgroundIn eukaryotic organisms, gene expression is regulated at multiple levels during the processes of transcription and translation. The absence of a tight regulatory network for transcription in the human malaria parasite suggests that gene expression may largely be controlled at post-transcriptional and translational levels.ResultsIn this study, we compare steady-state mRNA and polysome-associated mRNA levels of Plasmodium falciparum at different time points during its asexual cell cycle. For more than 30% of its genes, we observe a delay in peak transcript abundance in the polysomal fraction as compared to the steady-state mRNA fraction, suggestive of strong translational control. Our data show that key regulatory mechanisms could include inhibitory activity of upstream open reading frames and translational repression of the major virulence gene family by intronic transcripts. In addition, we observe polysomal mRNA-specific alternative splicing events and widespread transcription of non-coding transcripts.ConclusionsThese different layers of translational regulation are likely to contribute to a complex network that controls gene expression in this eukaryotic pathogen. Disrupting the mechanisms involved in such translational control could provide novel anti-malarial strategies.
FEBS Letters | 2007
Nadia Ponts; Christian Barreau; Florence Richard-Forget; Thérèse Ouellet
Effect of exogenous H2O2 and catalase was tested in liquid cultures of the deoxynivalenol and 15‐acetyldeoxynivalenol‐producing fungus Fusarium graminearum. Accordingly to previous results, H2O2 supplementation of the culture medium leads to increased toxin production. This study indicates that this event seems to be linked to a general up regulation of genes involved in the deoxynivalenol and 15‐acetyldeoxynivalenol biosynthesis pathway, commonly named Tri genes. In catalase‐treated cultures, toxin accumulation is reduced, and Tri genes expression is significantly down regulated. Furthermore, kinetics of expression of several Tri genes is proposed in relation to toxin accumulation. Biological meanings of these findings are discussed.
Bioinformatics | 2010
Elena Yavorska Harris; Nadia Ponts; Aleksandr Levchuk; Karine G. Le Roch; Stefano Lonardi
SUMMARY We present a new, accurate and efficient tool for mapping short reads obtained from the Illumina Genome Analyzer following sodium bisulfite conversion. Our tool, BRAT, supports single and paired-end reads and handles input files containing reads and mates of different lengths. BRAT is faster, maps more unique paired-end reads and has higher accuracy than existing programs. The software package includes tools to end-trim low-quality bases of the reads and to report nucleotide counts for mapped reads on the reference genome.
PLOS ONE | 2008
Nadia Ponts; Jianfeng Yang; Duk-Won D. Chung; Jacques Prudhomme; Thomas Girke; Paul Horrocks; Karine G. Le Roch
Background Reversible modification of proteins through the attachment of ubiquitin or ubiquitin-like modifiers is an essential post-translational regulatory mechanism in eukaryotes. The conjugation of ubiquitin or ubiquitin-like proteins has been demonstrated to play roles in growth, adaptation and homeostasis in all eukaryotes, with perturbation of ubiquitin-mediated systems associated with the pathogenesis of many human diseases, including cancer and neurodegenerative disorders. Methodology/Principal Findings Here we describe the use of an HMM search of functional Pfam domains found in the key components of the ubiquitin-mediated pathway necessary to activate and reversibly modify target proteins in eight apicomplexan parasitic protozoa for which complete or late-stage genome projects exist. In parallel, the same search was conducted on five model organisms, single-celled and metazoans, to generate data to validate both the search parameters employed and aid paralog classification in Apicomplexa. For each of the 13 species investigated, a set of proteins predicted to be involved in the ubiquitylation pathway has been identified and demonstrates increasing component members of the ubiquitylation pathway correlating with organism and genome complexity. Sequence homology and domain architecture analyses facilitated prediction of apicomplexan-specific protein function, particularly those involved in regulating cell division during these parasites complex life cycles. Conclusions/Significance This study provides a comprehensive analysis of proteins predicted to be involved in the apicomplexan ubiquitin-mediated pathway. Given the importance of such pathway in a wide variety of cellular processes, our data is a key step in elucidating the biological networks that, in part, direct the pathogenicity of these parasites resulting in a massive impact on global health. Moreover, apicomplexan-specific adaptations of the ubiquitylation pathway may represent new therapeutic targets for much needed drugs against apicomplexan parasites.
Bioinformatics | 2012
Elena Yavorska Harris; Nadia Ponts; Karine G. Le Roch; Stefano Lonardi
SUMMARY We introduce BRAT-BW, a fast, accurate and memory-efficient tool that maps bisulfite-treated short reads (BS-seq) to a reference genome using the FM-index (Burrows-Wheeler transform). BRAT-BW is significantly more memory efficient and faster on longer reads than current state-of-the-art tools for BS-seq data, without compromising on accuracy. BRAT-BW is a part of a software suite for genome-wide single base-resolution methylation data analysis that supports single and paired-end reads and includes a tool for estimation of methylation level at each cytosine. AVAILABILITY The software is available in the public domain at http://compbio.cs.ucr.edu/brat/.
Fems Microbiology Letters | 2009
Nadia Ponts; Leslie Couedelo; Marie-Noëlle Verdal-Bonnin; Christian Barreau; Florence Richard-Forget
The present study aims at clarifying the impact of oxidative stress on type B trichothecene production. The responses to hydrogen peroxide (H(2)O(2)) of an array of Fusarium graminearum and Fusarium culmorum strains were compared, both species carrying either the chemotype deoxynivalenol (DON) or nivalenol (NIV). In both cases, levels of in vitro toxin production are greatly influenced by the oxidative parameters of the medium. A 0.5 mM H(2)O(2) stress induces a two- to 50-fold enhancement of DON and acetyldeoxynivalenol production, whereas the same treatment results in a 2.4- to sevenfold decrease in NIV and fusarenone X accumulation. Different effects of oxidative stress on toxin production are the result of a variation in Fusariums antioxidant defence responses according to the chemotype of the isolate. Compared with DON strains, NIV isolates have a higher H(2)O(2)-destroying capacity, which partially results from a significant enhancement of catalase activity induced by peroxide stress. A 0.5 mM H(2)O(2) treatment leads to a 1.3- to 1.7-fold increase in the catalase activity of NIV isolates. Our data, which show the higher adaptation to oxidative stress developed by NIV isolates, are consistent with the higher virulence of these Fusarium strains on maize compared with DON isolates.
Autophagy | 2014
Serena Cervantes; Evelien M. Bunnik; Anita Saraf; Christopher M Conner; Aster Escalante; Mihaela E. Sardiu; Nadia Ponts; Jacques Prudhomme; Laurence Florens; Karine G. Le Roch
Autophagy is a catabolic pathway typically induced by nutrient starvation to recycle amino acids, but can also function in removing damaged organelles. In addition, this pathway plays a key role in eukaryotic development. To date, not much is known about the role of autophagy in apicomplexan parasites and more specifically in the human malaria parasite Plasmodium falciparum. Comparative genomic analysis has uncovered some, but not all, orthologs of autophagy-related (ATG) genes in the malaria parasite genome. Here, using a genome-wide in silico analysis, we confirmed that ATG genes whose products are required for vesicle expansion and completion are present, while genes involved in induction of autophagy and cargo packaging are mostly absent. We subsequently focused on the molecular and cellular function of P. falciparum ATG8 (PfATG8), an autophagosome membrane marker and key component of the autophagy pathway, throughout the parasite asexual and sexual erythrocytic stages. In this context, we showed that PfATG8 has a distinct and atypical role in parasite development. PfATG8 localized in the apicoplast and in vesicles throughout the cytosol during parasite development. Immunofluorescence assays of PfATG8 in apicoplast-minus parasites suggest that PfATG8 is involved in apicoplast biogenesis. Furthermore, treatment of parasite cultures with bafilomycin A1 and chloroquine, both lysosomotropic agents that inhibit autophagosome and lysosome fusion, resulted in dramatic morphological changes of the apicoplast, and parasite death. Furthermore, deep proteomic analysis of components associated with PfATG8 indicated that it may possibly be involved in ribophagy and piecemeal microautophagy of the nucleus. Collectively, our data revealed the importance and specificity of the autophagy pathway in the malaria parasite and offer potential novel therapeutic strategies.
Journal of Biological Chemistry | 2011
Nadia Ponts; Anita Saraf; Duk-Won D. Chung; Alona Harris; Jacques Prudhomme; Michael P. Washburn; Laurence Florens; Karine G. Le Roch
Malaria is one of the deadliest infectious diseases worldwide. The most severe form is caused by the eukaryotic protozoan parasite Plasmodium falciparum. Recent studies have highlighted the importance of post-translational regulations for the parasites progression throughout its life cycle, protein ubiquitylation being certainly one of the most abundant. The specificity of its components and the wide range of biological processes in which it is involved make the ubiquitylation pathway a promising source of suitable targets for anti-malarial drug development. Here, we combined immunofluorescent microscopy, biochemical assays, in silico prediction, and mass spectrometry analysis using the multidimensional protein identification technology, or MudPIT, to describe the P. falciparum ubiquitome. We found that ubiquitin conjugates are detected at every morphological stage of the parasite erythrocytic cycle. Furthermore, we detected that more than half of the parasites proteome represents possible targets for ubiquitylation, especially proteins found to be present at the most replicative stage of the asexual cycle, the trophozoite stage. A large proportion of ubiquitin conjugates were also detected at the schizont stage, consistent with a cell activity slowdown to prepare for merozoite differentiation and invasion. Finally, for the first time in the human malaria parasite, our results strongly indicate the presence of heterologous mixed conjugations, SUMO/UB. This discovery suggests that sumoylated proteins may be regulated by ubiquitylation in P. falciparum. Altogether, our results present the first stepping stone toward a better understanding of ubiquitylation and its role(s) in the biology of the human malaria parasite.