Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurence Florens is active.

Publication


Featured researches published by Laurence Florens.


Nature | 2002

A proteomic view of the Plasmodium falciparum life cycle.

Laurence Florens; Michael P. Washburn; J. Dale Raine; Robert M. Anthony; Munira Grainger; J. David Haynes; J. Kathleen Moch; Nemone Muster; John B. Sacci; David L. Tabb; Adam A. Witney; Dirk Wolters; Yimin Wu; Malcolm J. Gardner; Anthony A. Holder; Robert E. Sinden; John R. Yates; Daniel J. Carucci

The completion of the Plasmodium falciparum clone 3D7 genome provides a basis on which to conduct comparative proteomics studies of this human pathogen. Here, we applied a high-throughput proteomics approach to identify new potential drug and vaccine targets and to better understand the biology of this complex protozoan parasite. We characterized four stages of the parasite life cycle (sporozoites, merozoites, trophozoites and gametocytes) by multidimensional protein identification technology. Functional profiling of over 2,400 proteins agreed with the physiology of each stage. Unexpectedly, the antigenically variant proteins of var and rif genes, defined as molecules on the surface of infected erythrocytes, were also largely expressed in sporozoites. The detection of chromosomal clusters encoding co-expressed proteins suggested a potential mechanism for controlling gene expression.


Cell | 2005

Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription

Michael J. Carrozza; Bing Li; Laurence Florens; Tamaki Suganuma; Selene K. Swanson; Kenneth K. Lee; Wei Jong Shia; Scott Anderson; John R. Yates; Michael P. Washburn; Jerry L. Workman

Yeast Rpd3 histone deacetylase plays an important role at actively transcribed genes. We characterized two distinct Rpd3 complexes, Rpd3L and Rpd3S, by MudPIT analysis. Both complexes shared a three subunit core and Rpd3L contains unique subunits consistent with being a promoter targeted corepressor. Rco1 and Eaf3 were subunits specific to Rpd3S. Mutants of RCO1 and EAF3 exhibited increased acetylation in the FLO8 and STE11 open reading frames (ORFs) and the appearance of aberrant transcripts initiating within the body of these ORFs. Mutants in the RNA polymerase II-associated SET2 histone methyltransferase also displayed these defects. Set2 functioned upstream of Rpd3S and the Eaf3 methyl-histone binding chromodomain was important for recruitment of Rpd3S and for deacetylation within the STE11 ORF. These data indicate that Pol II-associated Set2 methylates H3 providing a transcriptional memory which signals for deacetylation of ORFs by Rpd3S. This erases transcription elongation-associated acetylation to suppress intragenic transcription initiation.


Nature | 2011

Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein

Kasia Hrecka; Caili Hao; Magda Gierszewska; Selene K. Swanson; Malgorzata Kesik-Brodacka; Smita Srivastava; Laurence Florens; Michael P. Washburn; Jacek Skowronski

Macrophages and dendritic cells have key roles in viral infections, providing virus reservoirs that frequently resist antiviral therapies and linking innate virus detection to antiviral adaptive immune responses. Human immunodeficiency virus 1 (HIV-1) fails to transduce dendritic cells and has a reduced ability to transduce macrophages, due to an as yet uncharacterized mechanism that inhibits infection by interfering with efficient synthesis of viral complementary DNA. In contrast, HIV-2 and related simian immunodeficiency viruses (SIVsm/mac) transduce myeloid cells efficiently owing to their virion-associated Vpx accessory proteins, which counteract the restrictive mechanism. Here we show that the inhibition of HIV-1 infection in macrophages involves the cellular SAM domain HD domain-containing protein 1 (SAMHD1). Vpx relieves the inhibition of lentivirus infection in macrophages by loading SAMHD1 onto the CRL4DCAF1 E3 ubiquitin ligase, leading to highly efficient proteasome-dependent degradation of the protein. Mutations in SAMHD1 cause Aicardi–Goutières syndrome, a disease that produces a phenotype that mimics the effects of a congenital viral infection. Failure to dispose of endogenous nucleic acid debris in Aicardi–Goutières syndrome results in inappropriate triggering of innate immune responses via cytosolic nucleic acids sensors. Thus, our findings show that macrophages are defended from HIV-1 infection by a mechanism that prevents an unwanted interferon response triggered by self nucleic acids, and uncover an intricate relationship between innate immune mechanisms that control response to self and to retroviral pathogens.


Nature | 2002

Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii

Jane M. Carlton; Samuel V. Angiuoli; Bernard B. Suh; Taco W. A. Kooij; Mihaela Pertea; Joana C. Silva; Maria D. Ermolaeva; Jonathan E. Allen; Jeremy D. Selengut; Hean L. Koo; Jeremy Peterson; Mihai Pop; Daniel S. Kosack; Martin Shumway; Shelby Bidwell; Shamira Shallom; Susan Van Aken; Steven Riedmuller; Tamara Feldblyum; Jennifer Cho; John Quackenbush; Martha Sedegah; Azadeh Shoaibi; Leda M. Cummings; Laurence Florens; John R. Yates; J. Dale Raine; Robert E. Sinden; Michael Harris; Deirdre Cunningham

Species of malaria parasite that infect rodents have long been used as models for malaria disease research. Here we report the whole-genome shotgun sequence of one species, Plasmodium yoelii yoelii, and comparative studies with the genome of the human malaria parasite Plasmodium falciparum clone 3D7. A synteny map of 2,212 P. y. yoelii contiguous DNA sequences (contigs) aligned to 14 P. falciparum chromosomes reveals marked conservation of gene synteny within the body of each chromosome. Of about 5,300 P. falciparum genes, more than 3,300 P. y. yoelii orthologues of predominantly metabolic function were identified. Over 800 copies of a variant antigen gene located in subtelomeric regions were found. This is the first genome sequence of a model eukaryotic parasite, and it provides insight into the use of such systems in the modelling of Plasmodium biology and disease.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Quantitative proteomic analysis of distinct mammalian Mediator complexes using normalized spectral abundance factors

Andrew C. Paoletti; Tari Parmely; Chieri Tomomori-Sato; Shigeo Sato; Dongxiao Zhu; Ronald C. Conaway; Joan Weliky Conaway; Laurence Florens; Michael P. Washburn

Components of multiprotein complexes are routinely determined by using proteomic approaches. However, this information lacks functional content except when new complex members are identified. To analyze quantitatively the abundance of proteins in human Mediator we used normalized spectral abundance factors generated from shotgun proteomics data sets. With this approach we define a common core of mammalian Mediator subunits shared by alternative forms that variably associate with the kinase module and RNA polymerase (pol) II. Although each version of affinity-purified Mediator contained some kinase module and RNA pol II, Mediator purified through F-Med26 contained the most RNA pol II and the least kinase module as demonstrated by the normalized spectral abundance factor approach. The distinct forms of Mediator were functionally characterized by using a transcriptional activity assay, where F-Med26 Mediator/RNA pol II was the most active. This method of protein complex visualization has important implications for the analysis of multiprotein complexes and assembly of protein interaction networks.


Nature | 2010

Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast

Norman Pavelka; Giulia Rancati; Jin Zhu; William D. Bradford; Anita Saraf; Laurence Florens; Brian W. Sanderson; Gaye Hattem; Rong Li

Aneuploidy, referring here to genome contents characterized by abnormal numbers of chromosomes, has been associated with developmental defects, cancer and adaptive evolution in experimental organisms. However, it remains unresolved how aneuploidy impacts gene expression and whether aneuploidy could directly bring about phenotypic variation and improved fitness over that of euploid counterparts. Here we show, using quantitative mass spectrometry-based proteomics and phenotypic profiling, that levels of protein expression in aneuploid yeast strains largely scale with chromosome copy numbers, following the same trend as that observed for the transcriptome, and that aneuploidy confers diverse phenotypes. We designed a novel scheme to generate, through random meiotic segregation, 38 stable and fully isogenic aneuploid yeast strains with distinct karyotypes and genome contents between 1N and 3N without involving any genetic selection. Through quantitative growth assays under various conditions or in the presence of a panel of chemotherapeutic or antifungal drugs, we found that some aneuploid strains grew significantly better than euploid control strains under conditions suboptimal for the latter. These results provide strong evidence that aneuploidy directly affects gene expression at both the transcriptome and proteome levels and can generate significant phenotypic variation that could bring about fitness gains under diverse conditions. Our findings suggest that the fitness ranking between euploid and aneuploid cells is dependent on context and karyotype, providing the basis for the notion that aneuploidy can directly underlie phenotypic evolution and cellular adaptation.


Molecular Cell | 2010

AFF4, a Component of the ELL/P-TEFb Elongation Complex and a Shared Subunit of MLL Chimeras, Can Link Transcription Elongation to Leukemia

Chengqi Lin; Edwin R. Smith; Hidehisa Takahashi; Ka Chun Lai; Skylar Martin-Brown; Laurence Florens; Michael P. Washburn; Joan Weliky Conaway; Ronald C. Conaway; Ali Shilatifard

Chromosomal translocations involving the MLL gene are associated with infant acute lymphoblastic and mixed lineage leukemia. There are a large number of translocation partners of MLL that share very little sequence or seemingly functional similarities; however, their translocations into MLL result in the pathogenesis of leukemia. To define the molecular reason why these translocations result in the pathogenesis of leukemia, we purified several of the commonly occurring MLL chimeras. We have identified super elongation complex (SEC) associated with all chimeras purified. SEC includes ELL, P-TEFb, AFF4, and several other factors. AFF4 is required for SEC stability and proper transcription by poised RNA polymerase II in metazoans. Knockdown of AFF4 in leukemic cells shows reduction in MLL chimera target gene expression, suggesting that AFF4/SEC could be a key regulator in the pathogenesis of leukemia through many of the MLL partners.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler

Aaron J. Gottschalk; Gyula Timinszky; Stephanie E. Kong; Jingji Jin; Yong Cai; Selene K. Swanson; Michael P. Washburn; Laurence Florens; Andreas G. Ladurner; Joan Weliky Conaway; Ronald C. Conaway

Posttranslational modifications play a key role in recruiting chromatin remodeling and modifying enzymes to specific regions of chromosomes to modulate chromatin structure. Alc1 (amplified in liver cancer 1), a member of the SNF2 ATPase superfamily with a carboxy-terminal macrodomain, is encoded by an oncogene implicated in the pathogenesis of hepatocellular carcinoma. Here we show that Alc1 interacts transiently with chromatin-associated proteins, including histones and the poly(ADP-ribose) polymerase Parp1. Alc1 ATPase and chromatin remodeling activities are strongly activated by Parp1 and its substrate NAD and require an intact macrodomain capable of binding poly(ADP-ribose). Alc1 is rapidly recruited to nucleosomes in vitro and to chromatin in cells when Parp1 catalyzes PAR synthesis. We propose that poly(ADP-ribosyl)ation of chromatin-associated Parp1 serves as a mechanism for targeting a SNF2 family remodeler to chromatin.


Analytical Chemistry | 2010

Refinements to Label Free Proteome Quantitation: How to Deal with Peptides Shared by Multiple Proteins

Ying Zhang; Zhihui Wen; Michael P. Washburn; Laurence Florens

Quantitative shotgun proteomics is dependent on the detection, identification, and quantitative analysis of peptides. An issue arises with peptides that are shared between multiple proteins. What protein did they originate from and how should these shared peptides be used in a quantitative proteomics workflow? To systematically evaluate shared peptides in label-free quantitative proteomics, we devised a well-defined protein sample consisting of known concentrations of six albumins from different species, which we added to a highly complex yeast lysate. We used the spectral counts based normalized spectral abundance factor (NSAF) as the starting point for our analysis and compared an exhaustive list of possible combinations of parameters to determine what was the optimal approach for dealing with shared peptides and shared spectral counts. We showed that distributing shared spectral counts based on the number of unique spectral counts led to the most accurate and reproducible results.


Nature Cell Biology | 2006

Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1

Tingting Yao; Ling Song; Wei Xu; Laurence Florens; Selene K. Swanson; Michael P. Washburn; Ronald C. Conaway; Joan Weliky Conaway; Robert E. Cohen

Uch37 is one of the three principal deubiquitinating enzymes (DUBs), and the only ubiquitin carboxy-terminal hydrolase (UCH)-family protease, that is associated with mammalian proteasomes. We show that Uch37 is responsible for the ubiquitin isopeptidase activity in the PA700 (19S) proteasome regulatory complex. PA700 isopeptidase disassembles Lys 48-linked polyubiquitin specifically from the distal end of the chain, a property that may be used to clear poorly ubiquitinated or unproductively bound substrates from the proteasome. To better understand Uch37 function and the mechanism responsible for its specificity, we investigated how Uch37 is recruited to proteasomes. Uch37 binds through Adrm1, a previously unrecognized orthologue of Saccharomyces cerevisiae Rpn13p, which in turn is bound to the S1 (also known as Rpn2) subunit of the 19S complex. Adrm1 (human Rpn13, hRpn13) binds the carboxy-terminal tail of Uch37, a region that is distinct from the UCH catalytic domain, which we show inhibits Uch37 activity. Following binding, Adrm1 relieves Uch37 autoinhibition, accelerating the hydrolysis of ubiquitin-7-amido-4-methylcoumarin (ubiquitin−AMC). However, neither Uch37 alone nor the Uch37–Adrm1 or Uch37–Adrm1–S1 complexes can hydrolyse di-ubiquitin efficiently; rather, incorporation into the 19S complex is required to enable processing of polyubiquitin chains.

Collaboration


Dive into the Laurence Florens's collaboration.

Top Co-Authors

Avatar

Michael P. Washburn

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Selene K. Swanson

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jerry L. Workman

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Joan Weliky Conaway

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Ronald C. Conaway

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Anita Saraf

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

John R. Yates

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ying Zhang

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Mihaela E. Sardiu

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Joshua M. Gilmore

Stowers Institute for Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge