Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nadine Barnes is active.

Publication


Featured researches published by Nadine Barnes.


Immunity | 2002

FcγRI-Deficient Mice Show Multiple Alterations to Inflammatory and Immune Responses

Nadine Barnes; Amanda L. Gavin; Peck Szee Tan; Patricia L. Mottram; Frank Koentgen; P. Mark Hogarth

The inactivation of the mouse high-affinity IgG Fc receptor FcgammaRI resulted in a wide range of defects in antibody Fc-dependent functions. These studies showed the primary importance of FcgammaRI in endocytosis of monomeric IgG, kinetics, and extent of phagocytosis of immune complexes, in macrophage-based ADCC, and in immune complex-dependent antigen presentation to primed T cells. In the absence of FcgammaRI, antibody responses were elevated, implying the removal of a control point by the deletion of FcgammaRI. In addition, FcR-gamma chain-deficient mice were found to express partially functional FcgammaRI. Thus, FcgammaRI is an early participant in Fc-dependent cell activation and in the development of immune responses.


Journal of Immunology | 2000

The IgG Fc Contains Distinct Fc Receptor (FcR) Binding Sites: The Leukocyte Receptors FcγRI and FcγRIIa Bind to a Region in the Fc Distinct from That Recognized by Neonatal FcR and Protein A

Bruce D. Wines; Maree S. Powell; Paul W. H. I. Parren; Nadine Barnes; P. Mark Hogarth

The CH2-CH3 interface of the IgG Fc domain contains the binding sites for a number of Fc receptors including Staphylococcal protein A and the neonatal Fc receptor (FcRn). It has recently been proposed that the CH2-CH3 interface also contains the principal binding site for an isoform of the low affinity IgG Fc receptor II (FcγRIIb). The FcγRI and FcγRII binding sites have previously been mapped to the lower hinge and the adjacent surface of the CH2 domain although contributions of the CH2-CH3 interface to binding have been suggested. This study addresses the question whether the CH2-CH3 interface plays a role in the interaction of IgG with FcγRI and FcγRIIa. We demonstrate that recombinant soluble murine FcγRI and human FcγRIIa did not compete with protein A and FcRn for binding to IgG, and that the CH2-CH3 interface therefore appears not to be involved in FcγRI and FcγRIIa binding. The importance of the lower hinge was confirmed by introducing mutations in the proposed binding site (LL234,235AA) which abrogated binding of recombinant soluble FcγRIIa to human IgG1. We conclude that the lower hinge and the adjacent region of the CH2 domain of IgG Fc is critical for the interaction between FcγRIIa and human IgG, whereas contributions of the CH2-CH3 interface appear to be insignificant.


Journal of Immunology | 2003

Unique Monoclonal Antibodies Define Expression of FcγRI on Macrophages and Mast Cell Lines and Demonstrate Heterogeneity Among Subcutaneous and Other Dendritic Cells

Peck Szee Tan; Amanda L. Gavin; Nadine Barnes; Duane W. Sears; David Vremec; Ken Shortman; Sebastian Amigorena; Patricia L. Mottram; P. Mark Hogarth

The mouse FcγRI is one of the most fundamentally important FcRs. It participates in different stages of immunity, being a low affinity receptor for T-independent IgG3 and yet a high affinity receptor for IgG2a, the product of a Th1 immune response. However, analysis of this receptor has been difficult due largely to the failure to generate specific Abs to this FcR. We have made use of the polymorphic differences between BALB/c and NOD/Lt mice to generate mAb specific for the FcγRI of BALB/c and the majority of in-bred mouse strains. Three different mAb were obtained that detected FcγRI encoded by the more common Fcgr1a and Fcgr1b alleles, and although they identified different epitopes, none inhibited the binding of IgG to FcγRI. When bound to FcγRI, these mAb induced calcium mobilization upon cross-linking. Several novel observations were made of the cellular distribution of FcγRI. Resting and IFN-γ-induced macrophages expressed FcγRI as well as mast cell lines. Both bone marrow-derived and freshly isolated dendritic cells from spleen and lymph nodes expressed FcγRI. A class of DC, uniquely found in s.c. lymph nodes, expressed the highest level of FcγRI and also high levels of MHC class II, DEC205, CD40, and CD86, with a low level of CD8α, corresponding to the phenotype for Langerhans-derived DC, which are highly active in Ag processing. Thus, in addition to any role in effector functions, FcγRI on APC may act as a link between innate and adaptive immunities by binding and mediating the uptake of T-independent immune complexes for presentation, thereby assisting in the development of T-dependent immune responses.


Journal of Immunology | 2006

Alteration of the Fc gamma RIIa dimer interface affects receptor signaling but not ligand binding.

Maree S. Powell; Nadine Barnes; Tessa Margaret Bradford; Ian F. Musgrave; Bruce D. Wines; John C. Cambier; P. Mark Hogarth

The aggregation of cell surface FcRs by immune complexes induces a number of important Ab-dependent effector functions. However, despite numerous studies that examine receptor function, very little is known about the molecular organization of these receptors within the cell. In this study, protein complementation, mutagenesis, and ligand binding analyses demonstrate that human FcγRIIa is present as a noncovalent dimer form. Protein complementation studies found that FcγRIIa molecules are closely associated. Mutagenesis of the dimer interface, as identified by crystallographic analyses, did not affect ligand binding yet caused significant alteration to the magnitude and kinetics of receptor phosphorylation. The data suggest that the ligand binding and the dimer interface are distinct regions within the receptor, and noncovalent dimerization of FcγRIIa may be an essential feature of the FcγRIIa signaling cascade.


ACS Chemical Biology | 2014

Site-selective solid-phase synthesis of a CCR5 sulfopeptide library to interrogate HIV binding and entry

Xuyu Liu; Lara R. Malins; Michael Roche; Jasminka Sterjovski; Renee C. Duncan; Mary Louise Garcia; Nadine Barnes; David A. Anderson; Martin J. Stone; Paul R. Gorry; Richard J. Payne

Tyrosine (Tyr) sulfation is a common post-translational modification that is implicated in a variety of important biological processes, including the fusion and entry of human immunodeficiency virus type-1 (HIV-1). A number of sulfated Tyr (sTyr) residues on the N-terminus of the CCR5 chemokine receptor are involved in a crucial binding interaction with the gp120 HIV-1 envelope glycoprotein. Despite the established importance of these sTyr residues, the exact structural and functional role of this post-translational modification in HIV-1 infection is not fully understood. Detailed biological studies are hindered in part by the difficulty in accessing homogeneous sulfopeptides and sulfoproteins through biological expression and established synthetic techniques. Herein we describe an efficient approach to the synthesis of sulfopeptides bearing discrete sulfation patterns through the divergent, site-selective incorporation of sTyr residues on solid support. By employing three orthogonally protected Tyr building blocks and a solid-phase sulfation protocol, we demonstrate the synthesis of a library of target N-terminal CCR5(2-22) sulfoforms bearing discrete and differential sulfation at Tyr10, Tyr14, and Tyr15, from a single resin-bound intermediate. We demonstrate the importance of distinct sites of Tyr sulfation in binding gp120 through a competitive binding assay between the synthetic CCR5 sulfopeptides and an anti-gp120 monoclonal antibody. These studies revealed a critical role of sulfation at Tyr14 for binding and a possible additional role for sulfation at Tyr10. N-terminal CCR5 variants bearing a sTyr residue at position 14 were also found to complement viral entry into cells expressing an N-terminally truncated CCR5 receptor.


Journal of Immunology | 1998

Cutting Edge: Identification of the Mouse IgG3 Receptor: Implications for Antibody Effector Function at the Interface Between Innate and Adaptive Immunity

Amanda L. Gavin; Nadine Barnes; Dijstelbloem Hm; Hogarth Pm


BMC Research Notes | 2018

Detection of virus-specific polymeric immunoglobulin A in acute hepatitis A, C, E virus serum samples using novel chimeric secretory component

Khayriyyah Mohd Hanafiah; Mary Louise Garcia; Nadine Barnes; David Andrew Anderson


Archive | 2015

Diagnostic, prognostic, therapeutic and screening protocols

David Andrew Anderson; Mary Louise Garcia; Nadine Barnes; Khayriyyah Mohd Hanafiah; Alan Lee Landay


Archive | 2013

Diagnostic, prognostic, therapeutic and screening protocols with respect to infectious mycobacterium

David Andrew Anderson; Khayriyyah Mohd Hanafiah; Mary Louise Garcia; Nadine Barnes; Joy Ji Liu; Katherine Rosalind Lieschke


Archive | 2013

Function at the Interface Between Innate and Receptor: Implications for Antibody Effector Cutting Edge: Identification of the Mouse IgG3

Mark Hogarth; Amanda L. Gavin; Nadine Barnes; Hilde M. Dijstelbloem

Collaboration


Dive into the Nadine Barnes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda L. Gavin

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Vremec

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Ken Shortman

Cooperative Research Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge