Nadine Rouard
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nadine Rouard.
FEMS Microbiology Ecology | 1999
Lucia Cavalca; Alain Hartmann; Nadine Rouard; Guy Soulas
The aim of the present work was to study the occurrence, distribution and diversity of 1,2-dichlorocatechol dioxygenase genes among 2,4-dichlorophenoxyacetic acid degrading bacteria. Phylogenetic relationships between the 31 strains or isolates were evaluated by amplified ribosomal DNA restriction analysis of the 16S rDNA gene. All the strains could be assigned to the β or γ subdivisions of the Proteobacteria. tfdC genes were detected by PCR amplification using degenerated primers. Two specific probes were produced from Ralstonia eutropha strain JMP134 and from a soil isolate strain PLAE6 which was grouped with Variovorax paradoxus. Sequence analysis of the probes revealed that they were homologous to the tfdC genes of JMP134 located on plasmid pJP4 and to the tfdC gene of Pseudomonas putida strain PaW85 located on plasmid pEST4011. The localization and the copy number of tfdC genes were determined by hybridization of plasmid profiles and genomic DNA restriction fragment length polymorphism profiles with the two probes. Most of the strains were found to bear tfdC genes on plasmids ranging from 78 to 532 kb; two strains without any plasmids were also found to hybridize with the probes, revealing a chromosomal localization of catabolic genes. Sequence analysis of the PCR products from different strains confirmed that four different classes of chlorocatechol 1,2-dioxygenase genes were present in the strains and isolates studied.
Biology and Fertility of Soils | 2003
Sandrine Rousseaux; Alain Hartmann; Nadine Rouard; Guy Soulas
We have studied the structural effects of application to the soil of a potentially detrimental herbicide, 4,6-dinitroorthocresol (DNOC) by analysing amplified ribosomal DNA restriction analysis (ARDRA) and terminal restriction fragment length polymorphism (T-RFLP) signatures of 16S rDNA fragments of culturable bacterial communities isolated from diluted soil suspensions. This approach has the potential to reveal changes induced by stressing the soil microflora with DNOC. This paper shows that, whereas only few changes of the ARDRA and T-RFLP profiles result from ageing of the soil, treatment of the soil with DNOC induces major modifications of these profiles. Therefore, for the practical purpose of pesticide registration, ARDRA and T-RFLP analysis performed on the dominant culturable fraction of the soil bacteria, implemented using conventional gel electrophoresis, offers the means of a routine, simple and meaningful test for detecting some of the changes affecting the structure of the soil microflora in response to pesticide application.
Chemosphere | 2014
Marion Devers-Lamrani; Stéphane Pesce; Nadine Rouard; Fabrice Martin-Laurent
Diuron was found to be mineralized in buffer strip soil (BS) and in the sediments (SED) of the Morcille river in the Beaujolais vineyard repeatedly treated with this herbicide. Enrichment cultures from BS and SED samples led to the isolation of three bacterial strains transforming diuron to 3,4-dichloroaniline (3,4-DCA) its aniline derivative. 16S rRNA sequencing revealed that they belonged to the genus Arthrobacter (99% of similarity to Arthrobacter globiformis strain K01-01) and were designated as Arthrobacter sp. BS1, BS2 and SED1. Diuron-degrading potential characterized by sequencing of the puhA gene, characterizing the diuron-degradaing potential, revealed 99% similarity to A. globiformis strain D47 puhA gene isolated a decade ago in the UK. These isolates were also able to use chlorotoluron for their growth. Although able to degrade linuron and monolinuron to related aniline derivatives they were not growing on them. Enrichment cultures led to the isolation of a strain from the sediments entirely degrading 3,4-DCA. 16S rRNA sequence analysis showed that it was affiliated to the genus Achromobacter (99% of similarity to Achromobacter sp. CH1) and was designated as Achromobacter sp. SP1. The dcaQ gene encoding enzyme responsible for the transformation of 3,4-DCA to chlorocatechol was found in SP1 with 99% similarity to that of Comamonas testosteroni WDL7. This isolate also used for its growth a range of anilines (3-chloro-4-methyl-aniline, 4-isopropylaniline, 4-chloroaniline, 3-chloroaniline, 4-bromoaniline). The mixed culture composed of BS2 and SP1 strains entirely mineralizes (14)C-diuron to (14)CO2. Diuron-mineralization observed in the enrichment culture could result from the metabolic cooperation between these two populations.
Chemosphere | 2013
S. Hussain; Marion Devers-Lamrani; Aymé Spor; Nadine Rouard; M. Porcherot; Jérémie Beguet; Fabrice Martin-Laurent
The temporal and spatial variability of the activity of soil microorganisms able to mineralize the herbicide isoproturon (IPU) pesticide was investigated over a three-year long crop rotation between 2008 and 2010. Isoproturon mineralization was higher in 2008, when winter wheat was treated with this herbicide, than in 2009 and 2010, when rape seed and barley were treated with different herbicides. Under laboratory conditions, we showed that isoproturon mineralization was not promoted by sulfonylurea herbicide applied on barley crop in 2010. IPU mineralization was shown to be highly variable at the field scale in years 2009 and 2010. Principal component analyses and analyses of similarities revealed that soil pH and equivalent humidity, and to a lesser extent soil organic matter content and cation exchange capacity (CEC) were the main drivers of isoproturon-mineralizing activity variance. Using a rather simple model that yields the rate of isoproturon mineralization as a function of soil pH and equivalent humidity, we explained up to 85% of the variance observed. Mapping field-scale distribution of isoproturon mineralization over the three-year survey indicated higher variability in 2009 and in 2010 as compared to 2008, suggesting that isoproturon treatment applied to winter wheat promoted isoproturon mineralization activity and reduced its spatial variability. Field-scale distribution of isoproturon mineralization showed important similarity to the distribution of soil pH, equivalent humidity and to a lesser extent to soil organic matter and cation exchange capacity (CEC) thereby confirming our model.
Environmental Science and Pollution Research | 2016
Chloé Merlin; Marion Devers; Jérémie Beguet; Baptiste Boggio; Nadine Rouard; Fabrice Martin-Laurent
The insecticide chlordecone applied for decades in banana plantations currently contaminates 20,000xa0ha of arable land in the French West Indies. Although the impact of various pesticides on soil microorganisms has been studied, chlordecone toxicity to the soil microbial community has never been assessed. We investigated in two different soils (sandy loam and silty loam) exposed to different concentrations of CLD (D0, control; D1 and D10, 1 and 10 times the agronomical dose) over different periods of time (3, 7, and 32xa0days): (i) the fate of chlordecone by measuring 14C-chlordecone mass balance and (ii) the impact of chlordecone on microbial community structure, abundance, and function, using standardized methods (-A-RISA, taxon-specific quantitative PCR (qPCR), and 14C-compounds mineralizing activity). Mineralization of 14C-chlordecone was inferior below 1xa0% of initial 14C-activity. Less than 2xa0% of 14C-activity was retrieved from the water-soluble fraction, while most of it remained in the organic-solvent-extractable fraction (75xa0% of initial 14C-activity). Only 23xa0% of the remaining 14C-activity was measured in nonextractable fraction. The fate of chlordecone significantly differed between the two soils. The soluble and nonextractable fractions were significantly higher in sandy loam soil than in silty loam soil. All the measured microbiological parameters allowed discriminating statistically the two soils and showed a variation over time. The genetic structure of the bacterial community remained insensitive to chlordecone exposure in silty loam soil. In response to chlordecone exposure, the abundance of Gram-negative bacterial groups (β-, γ-Proteobacteria, Planctomycetes, and Bacteroidetes) was significantly modified only in sandy loam soil. The mineralization of 14C-sodium acetate and 14C-2,4-d was insensitive to chlordecone exposure in silty loam soil. However, mineralization of 14C-sodium acetate was significantly reduced in soil microcosms of sandy loam soil exposed to chlordecone as compared to the control (D0). These data show that chlordecone exposure induced changes in microbial community taxonomic composition and function in one of the two soils, suggesting microbial toxicity of this organochlorine.
Applied Microbiology and Biotechnology | 2013
Stéphane Pesce; Jérémie Beguet; Nadine Rouard; Marion Devers-Lamrani; Fabrice Martin-Laurent
A real-time quantitative PCR method was developed to detect and quantify phenlylurea hydrolase genes’ (puhA and puhB) sequences from environmental DNA samples to assess diuron-degrading genetic potential in some soil and sediment microbial communities. In the soil communities, mineralization rates (determined with [ring-14C]-labeled diuron) were linked to diuron-degrading genetic potentials estimated from puhB number copies, which increased following repeated diuron treatments. In the sediment communities, mineralization potential did not depend solely on the quantity of puhB copies, underlining the need to assess gene expression. In the sediment samples, both puhB copy numbers and mineralization capacities were highly conditioned by whether or not diuron-treated soil was added. This points to transfers of degradative potential from soils to sediments. No puhA gene was detected in soil and sediment DNA extracts. Moreover, some sediments exhibited high diuron mineralization potential even though puhB genes were not detected, suggesting the existence of alternative diuron degradation pathways.
Science of The Total Environment | 2017
Facundo Rivera-Becerril; Odile Chatagnier; Nadine Rouard; Jérémie Beguet; Catherine Kuszala; Guy Soulas; Vivienne Gianinazzi-Pearson; Fabrice Martin-Laurent
Pesticide contamination of the environment can result from agricultural practices. Persistence of pesticide residues is a threat to the soil biota including plant roots and beneficial microorganisms, which support an important number of soil ecosystem services. Arbuscular mycorrhizal fungi (AMF) are key symbiotic microorganisms contributing to plant nutrition. In the present study, we assessed whether AMF could indicate eventual side effects of pesticides when directly applied to field soils. We evaluated the ecotoxicological impact of a cocktail of three commonly used agricultural pesticides (fenhexamid, folpel, deltamethrin) on the abundance and composition of the AMF community in vineyard (Montagne de Saint-Emilion) and arable (Martincourt) soils subjected to different agricultural practices. The dissipation of applied pesticides was monitored by multiresidual analyses to determine the scenario of exposure of the AMF community. Diversity analysis before application of the pesticide cocktail showed that the AMF communities of vineyard soils, subjected to mechanical weeding or grass cover, and of the arable soil subjected to intensive agriculture, were dominated by Glomerales. Ribotypes specific to each soil and to each agricultural practice in the same soil were found, with the highest abundance and diversity of AMF being observed in the vineyard soil with a grass-cover. The abundance of the global AMF community (Glomeromycota) and of three taxa of AMF (Funneliformis mosseae, Claroideoglomus etunicatum/C. claroideum) was evaluated after pesticide application. The abundance of Glomeromycota decreased in both soils after pesticide application while the abundance of Claroideoglomus and F. mosseae decreased only in the arable soil. These results show that higher doses of pesticide exposure did not affect the global abundance, but altered the composition, of the AMF community. Resilience of the AMF community composition was observed only in the vineyard soil, where F. mosseae was the most tolerant taxon to pesticide exposure.
Science of The Total Environment | 2018
Najoi El Azhari; Eftychia Dermou; Romain L. Barnard; Veronika Storck; Maria Tourna; Jérémie Beguet; Panagiotis A. Karas; Luigi Lucini; Nadine Rouard; Lucio Botteri; Federico Ferrari; Marco Trevisan; Dimitrios G. Karpouzas; Fabrice Martin-Laurent
Tebuconazole (TBZ) is a widely used triazole fungicide at EU level on cereals and vines. It is relatively persistent in soil where it is transformed to various transformation products (TPs) which might be environmentally relevant. We assessed the dissipation of TBZ in soil under contrasting incubation conditions (standard vs winter simulated) that are relevant to its application scheme, determined its transformation pathway using advanced analytical tools and 14C-labeled TBZ and assessed its soil microbial toxicity. Mineralization of 14C-triazole-ring-labeled TBZ was negligible but up to 11% of 14C-penyl-ring-labeled TBZ evolved as 14CO2 within 150u202fdays of incubation. TBZ persistence increased at higher dose rates (×10 compared to the recommended agronomical dose ×1) and under winter simulated conditions compared to standard incubation conditions (at ×1 dose rate DT50 of 202 and 88u202fdays, respectively). Non-target suspect screening enabled the detection of 22 TPs of TBZ, among which 17 were unknown. Mass spectrometry analysis led to the identification of 1-(4-chlorophenyl) ethanone, a novel TP of TBZ, the formation of which and decay in soil was determined by gas chromatography mass spectrometry. Three hypothetical transformation pathways of TBZ, all converging to 1H-1,2,4-triazole are proposed based on suspect screening. The ecotoxicological effect of TBZ and of its TPs was assessed by measuring by qPCR the abundance of the total bacteria and the relative abundance of 11 prokaryotic taxa and 4 functional groups. A transient impact of TBZ on the relative abundance of all prokaryotic taxa (except α-proteobacteria and Bacteroidetes) and one functional microbial group (pcaH-carrying microorganisms) was observed. However the direction of the effect (positive or negative) varied, and in certain cases, depended on the incubation conditions. Proteobacteria was the most responsive phylum to TBZ with recovery observed 20u202fdays after treatment. The ecotoxicological effects on the soil microorganisms were not correlated with 1-(4-chlorophenyl) ethanone.
The ISME Journal | 2018
Ilonka C. Engelhardt; Amy Welty; Steven J. Blazewicz; David Bru; Nadine Rouard; Marie-Christine Breuil; Arthur Gessler; Lucía Galiano; José Carlos Miranda; Aymé Spor; Romain L. Barnard
Changes in frequency and amplitude of rain events, that is, precipitation patterns, result in different water conditions with soil depth, andxa0likely affect plant growth and shape plant and soil microbial activity. Here, we used 18O stable isotope probing (SIP) to investigate bacterial and fungal communities that actively grew or not upon rewetting, at three different depths in soil mesocosms previously subjected to frequent or infrequent watering for 12 weeks (equal total water input). Phylogenetic marker genes for bacteria and fungi were sequenced after rewetting, and plant-soil microbial coupling documented by plant 13C-CO2 labeling. Soil depth, rather than precipitation pattern, was most influential in shaping microbial response to rewetting, and had differential effects on active and inactive bacterial and fungal communities. After rewetting, active bacterial communities were less rich, more even and phylogenetically related than the inactive, and reactivated throughout the soil profile. Active fungal communities after rewetting were less abundant and rich than the inactive. The coupling between plants and soil microbes decreased under infrequent watering in the top soil layer. We suggest that differences in fungal and bacterial abundance and relative activity could result in large effects on subsequent soil biogeochemical cycling.
euro mediterranean conference | 2017
Asma Ben Salem; Nadine Rouard; Marion Devers; Jérémie Beguet; Fabrice Martin-Laurent; Pierluigi Caboni; Hanene Chaabane; Sami Fattouch
Pesticides, especially chlorpyrifos which is a broad-spectrum insecticide used extensively in agriculture worldwide, are applied as a low-cost and effective possibility to ensure and increase crop yields.