Aymé Spor
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aymé Spor.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Jeremy E. Koenig; Aymé Spor; Nicholas Scalfone; Ashwana D. Fricker; Jesse Stombaugh; Rob Knight; Largus T. Angenent; Ruth E. Ley
The colonization process of the infant gut microbiome has been called chaotic, but this view could reflect insufficient documentation of the factors affecting the microbiome. We performed a 2.5-y case study of the assembly of the human infant gut microbiome, to relate life events to microbiome composition and function. Sixty fecal samples were collected from a healthy infant along with a diary of diet and health status. Analysis of >300,000 16S rRNA genes indicated that the phylogenetic diversity of the microbiome increased gradually over time and that changes in community composition conformed to a smooth temporal gradient. In contrast, major taxonomic groups showed abrupt shifts in abundance corresponding to changes in diet or health. Community assembly was nonrandom: we observed discrete steps of bacterial succession punctuated by life events. Furthermore, analysis of ≈500,000 DNA metagenomic reads from 12 fecal samples revealed that the earliest microbiome was enriched in genes facilitating lactate utilization, and that functional genes involved in plant polysaccharide metabolism were present before the introduction of solid food, priming the infant gut for an adult diet. However, ingestion of table foods caused a sustained increase in the abundance of Bacteroidetes, elevated fecal short chain fatty acid levels, enrichment of genes associated with carbohydrate utilization, vitamin biosynthesis, and xenobiotic degradation, and a more stable community composition, all of which are characteristic of the adult microbiome. This study revealed that seemingly chaotic shifts in the microbiome are associated with life events; however, additional experiments ought to be conducted to assess how different infants respond to similar life events.
Nature Reviews Microbiology | 2011
Aymé Spor; Omry Koren; Ruth E. Ley
To what extent do host genetics control the composition of the gut microbiome? Studies comparing the gut microbiota in human twins and across inbred mouse lines have yielded inconsistent answers to this question. However, candidate gene approaches, in which one gene is deleted or added to a model host organism, show that a single host gene can have a tremendous effect on the diversity and population structure of the gut microbiota. Now, quantitative genetics is emerging as a highly promising approach that can be used to better understand the overall architecture of host genetic influence on the microbiota, and to discover additional host genes controlling microbial diversity in the gut. In this Review, we describe how host genetics and the environment shape the microbiota, and how these three factors may interact in the context of chronic disease.
Cell | 2012
Omry Koren; Julia K. Goodrich; Tyler C. Cullender; Aymé Spor; Kirsi Laitinen; Helene Kling Bäckhed; Antonio Gonzalez; Jeffrey J. Werner; Largus T. Angenent; Rob Knight; Fredrik Bäckhed; Erika Isolauri; Seppo Salminen; Ruth E. Ley
Many of the immune and metabolic changes occurring during normal pregnancy also describe metabolic syndrome. Gut microbiota can cause symptoms of metabolic syndrome in nonpregnant hosts. Here, to explore their role in pregnancy, we characterized fecal bacteria of 91 pregnant women of varying prepregnancy BMIs and gestational diabetes status and their infants. Similarities between infant-mother microbiotas increased with childrens age, and the infant microbiota was unaffected by mothers health status. Gut microbiota changed dramatically from first (T1) to third (T3) trimesters, with vast expansion of diversity between mothers, an overall increase in Proteobacteria and Actinobacteria, and reduced richness. T3 stool showed strongest signs of inflammation and energy loss; however, microbiome gene repertoires were constant between trimesters. When transferred to germ-free mice, T3 microbiota induced greater adiposity and insulin insensitivity compared to T1. Our findings indicate that host-microbial interactions that impact host metabolism can occur and may be beneficial in pregnancy.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Jason A. Peiffer; Aymé Spor; Omry Koren; Zhao Jin; Susannah G. Tringe; Jeffery L. Dangl; Edward S. Buckler; Ruth E. Ley
The rhizosphere is a critical interface supporting the exchange of resources between plants and their associated soil environment. Rhizosphere microbial diversity is influenced by the physical and chemical properties of the rhizosphere, some of which are determined by the genetics of the host plant. However, within a plant species, the impact of genetic variation on the composition of the microbiota is poorly understood. Here, we characterized the rhizosphere bacterial diversity of 27 modern maize inbreds possessing exceptional genetic diversity grown under field conditions. Randomized and replicated plots of the inbreds were planted in five field environments in three states, each with unique soils and management conditions. Using pyrosequencing of bacterial 16S rRNA genes, we observed substantial variation in bacterial richness, diversity, and relative abundances of taxa between bulk soil and the maize rhizosphere, as well as between fields. The rhizospheres from maize inbreds exhibited both a small but significant proportion of heritable variation in total bacterial diversity across fields, and substantially more heritable variation between replicates of the inbreds within each field. The results of this study should facilitate expanded studies to identify robust heritable plant–microbe interactions at the level of individual polymorphisms by genome wide association, so that plant-microbiome interactions can ultimately be incorporated into plant breeding.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Omry Koren; Aymé Spor; Jenny Felin; Frida Fåk; Jesse Stombaugh; Valentina Tremaroli; Carl Johan Behre; Rob Knight; Björn Fagerberg; Ruth E. Ley; Fredrik Bäckhed
Periodontal disease has been associated with atherosclerosis, suggesting that bacteria from the oral cavity may contribute to the development of atherosclerosis and cardiovascular disease. Furthermore, the gut microbiota may affect obesity, which is associated with atherosclerosis. Using qPCR, we show that bacterial DNA was present in the atherosclerotic plaque and that the amount of DNA correlated with the amount of leukocytes in the atherosclerotic plaque. To investigate the microbial composition of atherosclerotic plaques and test the hypothesis that the oral or gut microbiota may contribute to atherosclerosis in humans, we used 454 pyrosequencing of 16S rRNA genes to survey the bacterial diversity of atherosclerotic plaque, oral, and gut samples of 15 patients with atherosclerosis, and oral and gut samples of healthy controls. We identified Chryseomonas in all atherosclerotic plaque samples, and Veillonella and Streptococcus in the majority. Interestingly, the combined abundances of Veillonella and Streptococcus in atherosclerotic plaques correlated with their abundance in the oral cavity. Moreover, several additional bacterial phylotypes were common to the atherosclerotic plaque and oral or gut samples within the same individual. Interestingly, several bacterial taxa in the oral cavity and the gut correlated with plasma cholesterol levels. Taken together, our findings suggest that bacteria from the oral cavity, and perhaps even the gut, may correlate with disease markers of atherosclerosis.
Obesity | 2012
Yann Ravussin; Omry Koren; Aymé Spor; Charles A. LeDuc; Roee Gutman; Jesse Stombaugh; Rob Knight; Ruth E. Ley; Rudolph L. Leibel
Maintenance of a reduced body weight is accompanied by a decrease in energy expenditure beyond that accounted for by reduced body mass and composition, as well as by an increased drive to eat. These effects appear to be due—in part—to reductions in circulating leptin concentrations due to loss of body fat. Gut microbiota have been implicated in the regulation of body weight. The effects of weight loss on qualitative aspects of gut microbiota have been studied in humans and mice, but these studies have been confounded by concurrent changes in diet composition, which influence microbial community composition. We studied the impact of 20% weight loss on the microbiota of diet‐induced obese (DIO: 60% calories fat) mice on a high‐fat diet (HFD). Weight‐reduced DIO (DIO‐WR) mice had the same body weight and composition as control (CON) ad‐libitum (AL) fed mice being fed a control diet (10% calories fat), allowing a direct comparison of diet and weight‐perturbation effects. Microbial community composition was assessed by pyrosequencing 16S rRNA genes derived from the ceca of sacrificed animals. There was a strong effect of diet composition on the diversity and composition of the microbiota. The relative abundance of specific members of the microbiota was correlated with circulating leptin concentrations and gene expression levels of inflammation markers in subcutaneous white adipose tissue in all mice. Together, these results suggest that both host adiposity and diet composition impact microbiota composition, possibly through leptin‐mediated regulation of mucus production and/or inflammatory processes that alter the gut habitat.
Applied and Environmental Microbiology | 2011
Shaoxiao Wang; Aymé Spor; Thibault Nidelet; Pierre Montalent; Christine Dillmann; Dominique de Vienne; Delphine Sicard
ABSTRACT Adaptation is the process whereby a population or species becomes better fitted to its habitat through modifications of various life history traits which can be positively or negatively correlated. The molecular factors underlying these covariations remain to be elucidated. Using Saccharomyces cerevisiae as a model system, we have investigated the effects on life history traits of varying the dosage of genes involved in the transformation of resources into energy. Changing gene dosage for each of three glycolytic enzyme genes (hexokinase 2, phosphoglucose isomerase, and fructose-1,6-bisphosphate aldolase) resulted in variation in enzyme activities, glucose consumption rate, and life history traits (growth rate, carrying capacity, and cell size). However, the range of effects depended on which enzyme was expressed differently. Most interestingly, these changes revealed a genetic trade-off between carrying capacity and cell size, supporting the discovery of two extreme life history strategies already described in yeast populations: the “ants,” which have lower glycolytic gene dosage, take up glucose slowly, and have a small cell size but reach a high carrying capacity, and the “grasshoppers,” which have higher glycolytic gene dosage, consume glucose more rapidly, and allocate it to a larger cell size but reach a lower carrying capacity. These results demonstrate antagonist pleiotropy for glycolytic genes and show that altered dosage of a single gene drives a switch between two life history strategies in yeast.
International Journal of Food Microbiology | 2010
Aymé Spor; Christine Dillmann; Shaoxiao Wang; Dominique de Vienne; Delphine Sicard; Eric Parent
Hierarchical Bayesian Modelling is powerful however under-used to model and evaluate the risks associated with the development of pathogens in food industry, to predict exotic invasions, species extinctions and development of emerging diseases, or to assess chemical risks. Modelling population dynamics of Saccharomyces cerevisiae considering its biodiversity and other sources of variability is crucial for selecting strains meeting industrial needs. Using this approach, we studied the population dynamics of S. cerevisiae, the domesticated yeast, widely encountered in food industry, notably in brewery, vinery, bakery and distillery. We relied on a logistic equation to estimate the key variables of population growth, but we took also into account factors able to affect them, namely environmental effects, genetic diversity and measurement errors. Our probabilistic approach allowed us: (i) to model the dynamical behaviour of strains in a given condition under some uncertainty, (ii) to measure environmental effects and (iii) to evaluate genetic variability of the growth key variables.
Nature Biotechnology | 2011
Pelin Yilmaz; Renzo Kottmann; Dawn Field; Rob Knight; James R. Cole; Linda A. Amaral-Zettler; Jack A. Gilbert; Ilene Karsch-Mizrachi; Anjanette Johnston; Guy Cochrane; Robert Vaughan; Chris Hunter; Joonhong Park; Norman Morrison; Philippe Rocca-Serra; Peter Sterk; Manimozhiyan Arumugam; Mark J. Bailey; Laura K. Baumgartner; Bruce W. Birren; Martin J. Blaser; Vivien Bonazzi; Tim Booth; Peer Bork; Frederic D. Bushman; Pier Luigi Buttigieg; Patrick Chain; Emily S. Charlson; Elizabeth K. Costello; Heather Huot-Creasy
Proceedings of the National Academy of Sciences of the United States of America | 2010
Jeremy E. Koenig; Aymé Spor; Nicholas Scalfone; Ashwana D. Fricker; Jesse Stombaugh; Rob Knight; Largus T. Angenent; Ruth E. Ley