Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nadine Van Roy is active.

Publication


Featured researches published by Nadine Van Roy.


Genome Biology | 2002

Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes

Jo Vandesompele; Katleen De Preter; Filip Pattyn; Bruce Poppe; Nadine Van Roy; Anne De Paepe; Franki Speleman

BackgroundGene-expression analysis is increasingly important in biological research, with real-time reverse transcription PCR (RT-PCR) becoming the method of choice for high-throughput and accurate expression profiling of selected genes. Given the increased sensitivity, reproducibility and large dynamic range of this methodology, the requirements for a proper internal control gene for normalization have become increasingly stringent. Although housekeeping gene expression has been reported to vary considerably, no systematic survey has properly determined the errors related to the common practice of using only one control gene, nor presented an adequate way of working around this problem.ResultsWe outline a robust and innovative strategy to identify the most stably expressed control genes in a given set of tissues, and to determine the minimum number of genes required to calculate a reliable normalization factor. We have evaluated ten housekeeping genes from different abundance and functional classes in various human tissues, and demonstrated that the conventional use of a single gene for normalization leads to relatively large errors in a significant proportion of samples tested. The geometric mean of multiple carefully selected housekeeping genes was validated as an accurate normalization factor by analyzing publicly available microarray data.ConclusionsThe normalization strategy presented here is a prerequisite for accurate RT-PCR expression profiling, which, among other things, opens up the possibility of studying the biological relevance of small expression differences.


The New England Journal of Medicine | 1999

Gain of Chromosome Arm 17q and Adverse Outcome in Patients with Neuroblastoma

Nick Bown; Simon Cotterill; Maria Łastowska; Seamus O'Neill; Andrew D.J. Pearson; Dominique Plantaz; Mounira Meddeb; Gisèle Danglot; Christian Brinkschmidt; Holger Christiansen; Genevieve Laureys; James Nicholson; Alain Bernheim; David R. Betts; Jo Vandesompele; Nadine Van Roy; Frank Speleman

BACKGROUND Gain of genetic material from chromosome arm 17q (gain of segment 17q21-qter) is the most frequent cytogenetic abnormality of neuroblastoma cells. This gain has been associated with advanced disease, patients who are > or =1 year old, deletion of chromosome arm 1p, and amplification of the N-myc oncogene, all of which predict an adverse outcome. We investigated these associations and evaluated the prognostic importance of the status of chromosome 17. METHODS We compiled molecular cytogenetic analyses of chromosome 17 in primary neuroblastomas in 313 patients at six European centers. Clinical and survival information were collected, along with data on 1p, N-myc, and ploidy. RESULTS Unbalanced gain of segment 17q21-qter was found in 53.7 percent of the tumors, whereas the chromosome was normal in 46.3 percent. The gain of 17q was characteristic of advanced tumors and of tumors in children > or =1 year of age and was strongly associated with the deletion of 1p and amplification of N-myc. No tumor showed amplification of N-myc in the absence of either deletion of 1p or gain of 17q. Gain of 17q was a significant predictive factor for adverse outcome in univariate analysis. Among the patients with this abnormality, overall survival at five years was 30.6 percent (95 percent confidence interval, 21 to 40 percent), as compared with 86.0 percent (95 percent confidence interval, 78 to 91 percent) among those with normal 17q status. in multivariate analysis, gain of 17q was the most powerful prognostic factor, followed by the presence of stage 4 disease and deletion of 1p (hazard ratios, 3.4, 2.3, and 1.9, respectively). CONCLUSIONS Gain of chromosome segment 17q21-qter is an important prognostic factor in children with neuroblastoma.


Human Mutation | 2000

Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects

Ludwine Messiaen; Tom Callens; Geert Mortier; Diane Beysen; Ina Vandenbroucke; Nadine Van Roy; Frank Speleman; Anne De Paepe

Neurofibromatosis type 1 (NF1) is one of the most common autosomal dominant disorders and is caused by mutations in the NF1 gene. Mutation detection is complex due to the large size of the NF1 gene, the presence of pseudogenes and the great variety of possible lesions. Although there is no evidence for locus heterogeneity in NF1, mutation detection rates rarely exceed 50%. We studied 67 unrelated NF1 patients fulfilling the NIH diagnostic criteria, 29 familial and 38 sporadic cases, using a cascade of complementary techniques. We performed a protein truncation test starting from puromycin‐treated EBV cell lines and, if no mutation was found, continued with heteroduplex, FISH, Southern blot and cytogenetic analysis. We identified the germline mutation in 64 of 67 patients and 32 of the mutations are novel. This is the highest mutation detection rate reported in a study of typical NF1 patients. All mutations were studied at the genomic and RNA level. The mutational spectrum consisted of 25 nonsense, 12 frameshift, 19 splice mutations, six missense and/or small in‐frame deletions, one deletion of the entire NF1 gene, and a translocation t(14;17)(q32;q11.2). Our data suggest that exons 10a‐10c and 37 are mutation‐rich regions and that together with some recurrent mutations they may account for almost 30% of the mutations in classical NF1 patients. We found a high frequency of unusual splice mutations outside of the AG/GT 5¢ and 3¢ splice sites. As some of these mutations form stable transcripts, it remains possible that a truncated neurofibromin is formed. Hum Mutat 15:541–555, 2000.


Nature Genetics | 2004

Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis

Jan Hellemans; Olena Preobrazhenska; Andy Willaert; Philippe Debeer; Peter Verdonk; Teresa Costa; Katrien Janssens; Björn Menten; Nadine Van Roy; Stefan Vermeulen; Ravi Savarirayan; Wim Van Hul; Filip Vanhoenacker; Danny Huylebroeck; Anne De Paepe; Jean-Marie Naeyaert; Jo Vandesompele; Frank Speleman; Kristin Verschueren; Paul Coucke; Geert Mortier

Osteopoikilosis, Buschke-Ollendorff syndrome (BOS) and melorheostosis are disorders characterized by increased bone density. The occurrence of one or more of these phenotypes in the same individual or family suggests that these entities might be allelic. We collected data from three families in which affected individuals had osteopoikilosis with or without manifestations of BOS or melorheostosis. A genome-wide linkage analysis in these families, followed by the identification of a microdeletion in an unrelated individual with these diseases, allowed us to map the gene that is mutated in osteopoikilosis. All the affected individuals that we investigated were heterozygous with respect to a loss-of-function mutation in LEMD3 (also called MAN1), which encodes an inner nuclear membrane protein. A somatic mutation in the second allele of LEMD3 could not be identified in fibroblasts from affected skin of an individual with BOS and an individual with melorheostosis. XMAN1, the Xenopus laevis ortholog, antagonizes BMP signaling during embryogenesis. In this study, LEMD3 interacted with BMP and activin-TGFβ receptor–activated Smads and antagonized both signaling pathways in human cells.


Nature Genetics | 2010

PHF6 mutations in T-cell acute lymphoblastic leukemia

Pieter Van Vlierberghe; Teresa Palomero; Hossein Khiabanian; Joni Van der Meulen; Mireia Castillo; Nadine Van Roy; Barbara De Moerloose; Jan Philippé; Sara González-García; María L. Toribio; Tom Taghon; Linda Zuurbier; Barbara Cauwelier; Christine J. Harrison; Claire Schwab; Markus Pisecker; Sabine Strehl; Anton W. Langerak; Jozef Gecz; Edwin Sonneveld; Rob Pieters; Elisabeth Paietta; Jacob M. Rowe; Peter H. Wiernik; Yves Benoit; Jean Soulier; Bruce Poppe; Xiaopan Yao; Carlos Cordon-Cardo; Jules P.P. Meijerink

Tumor suppressor genes on the X chromosome may skew the gender distribution of specific types of cancer. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with an increased incidence in males. In this study, we report the identification of inactivating mutations and deletions in the X-linked plant homeodomain finger 6 (PHF6) gene in 16% of pediatric and 38% of adult primary T-ALL samples. Notably, PHF6 mutations are almost exclusively found in T-ALL samples from male subjects. Mutational loss of PHF6 is importantly associated with leukemias driven by aberrant expression of the homeobox transcription factor oncogenes TLX1 and TLX3. Overall, these results identify PHF6 as a new X-linked tumor suppressor in T-ALL and point to a strong genetic interaction between PHF6 loss and aberrant expression of TLX transcription factors in the pathogenesis of this disease.


Modern Pathology | 2002

Quantification of MYCN, DDX1, and NAG gene copy number in neuroblastoma using a real-time quantitative PCR assay.

Katleen De Preter; Frank Speleman; Valérie Combaret; John Lunec; Genevieve Laureys; Bert H J Eussen; Nadine Francotte; Julian Board; A. D. J. Pearson; Anne De Paepe; Nadine Van Roy; Jo Vandesompele

Amplification of the proto-oncogene MYCN is a strong adverse prognostic factor in neuroblastoma patients in all tumor stages. The status of the MYCN gene has become an important factor in clinical decision making and therapy stratification. Consequently, fast and accurate assessment of MYCN gene copy number is of the utmost importance and the use of two independent methods to determine MYCN status is recommended. For these reasons we have developed and evaluated a real-time quantitative PCR (Q-PCR) assay as an alternative for time-consuming Southern blot analysis (SB), and as a second independent technique in parallel with fluorescence in situ hybridization (FISH) analysis. Advantages of Q-PCR are a large dynamic range of quantification, no requirement for post-PCR sample handling and the need for very small amounts of starting material. The accuracy of the assay was illustrated by measurement of MYCN single gene copy changes in DNA samples of two patients with 2p deletion and duplication, respectively. Two different detection chemistries i.e., a sequence specific TaqMan probe and a generic DNA binding dye SYBR Green I were evaluated and shown to yield similar results. Also, two different calculation methods for copy number determination were used i.e., the kinetic method and the comparative CT method, and shown to be equivalent. In total, 175 neuroblastoma samples with known MYCN status, as determined by FISH and/or SB, were examined. Q-PCR data were highly concordant with FISH and SB data. In addition to MYCN copy number evaluation, DDX1 and NAG gene copy numbers were determined using a similar Q-PCR strategy. Survival analysis pointed out that DDX1 and/or NAG amplification has no additional adverse effect on prognosis.


Clinical Cancer Research | 2010

Meta-analysis of Neuroblastomas Reveals a Skewed ALK Mutation Spectrum in Tumors with MYCN Amplification

Sara De Brouwer; Katleen De Preter; Candy Kumps; Piotr Zabrocki; Michaël Porcu; Ellen M. Westerhout; Arjan Lakeman; Jo Vandesompele; Jasmien Hoebeeck; Tom Van Maerken; Anne De Paepe; Genevieve Laureys; Johannes H. Schulte; Alexander Schramm; Caroline Van den Broecke; Joëlle Vermeulen; Nadine Van Roy; Klaus Beiske; Marleen Renard; Rosa Noguera; Olivier Delattre; Isabelle Janoueix-Lerosey; Per Kogner; Tommy Martinsson; Akira Nakagawara; Miki Ohira; Huib N. Caron; Angelika Eggert; Jan Cools; Rogier Versteeg

Purpose: Activating mutations of the anaplastic lymphoma kinase (ALK) were recently described in neuroblastoma. We carried out a meta-analysis of 709 neuroblastoma tumors to determine their frequency and mutation spectrum in relation to genomic and clinical parameters, and studied the prognostic significance of ALK copy number and expression. Experimental Design: The frequency and type of ALK mutations, copy number gain, and expression were analyzed in a new series of 254 neuroblastoma tumors. Data from 455 published cases were used for further in-depth analysis. Results: ALK mutations were present in 6.9% of 709 investigated tumors, and mutations were found in similar frequencies in favorable [International Neuroblastoma Staging System (INSS) 1, 2, and 4S; 5.7%] and unfavorable (INSS 3 and 4; 7.5%) neuroblastomas (P = 0.087). Two hotspot mutations, at positions R1275 and F1174, were observed (49% and 34.7% of the mutated cases, respectively). Interestingly, the F1174 mutations occurred in a high proportion of MYCN-amplified cases (P = 0.001), and this combined occurrence was associated with a particular poor outcome, suggesting a positive cooperative effect between both aberrations. Furthermore, the F1174L mutant was characterized by a higher degree of autophosphorylation and a more potent transforming capacity as compared with the R1275Q mutant. Chromosome 2p gains, including the ALK locus (91.8%), were associated with a significantly increased ALK expression, which was also correlated with poor survival. Conclusions: ALK mutations occur in equal frequencies across all genomic subtypes, but F1174L mutants are observed in a higher frequency of MYCN-amplified tumors and show increased transforming capacity as compared with the R1275Q mutants. Clin Cancer Res; 16(17); 4353–62. ©2010 AACR.


Journal of Clinical Oncology | 2005

Unequivocal Delineation of Clinicogenetic Subgroups and Development of a New Model for Improved Outcome Prediction in Neuroblastoma

Jo Vandesompele; Michael Baudis; Katleen De Preter; Nadine Van Roy; Peter F. Ambros; Nick Bown; Christian Brinkschmidt; Holger Christiansen; Valérie Combaret; Maria Lastowska; James Nicholson; Anne O'Meara; Dominique Plantaz; Raymond L. Stallings; Bénédicte Brichard; Caroline Van den Broecke; Sylvia De Bie; Anne De Paepe; Genevieve Laureys; Frank Speleman

PURPOSE Neuroblastoma is a genetically heterogeneous pediatric tumor with a remarkably variable clinical behavior ranging from widely disseminated disease to spontaneous regression. In this study, we aimed for comprehensive genetic subgroup discovery and assessment of independent prognostic markers based on genome-wide aberrations detected by comparative genomic hybridization (CGH). MATERIALS AND METHODS Published CGH data from 231 primary untreated neuroblastomas were converted to a digitized format suitable for global data mining, subgroup discovery, and multivariate survival analyses. RESULTS In contrast to previous reports, which included only a few genetic parameters, we present here for the first time a strategy that allows unbiased evaluation of all genetic imbalances detected by CGH. The presented approach firmly established the existence of three different clinicogenetic subgroups and indicated that chromosome 17 status and tumor stage were the only independent significant predictors for patient outcome. Important new findings were: (1) a normal chromosome 17 status as a delineator of a subgroup of presumed favorable-stage tumors with highly increased risk; (2) the recognition of a survivor signature conferring 100% 5-year survival for stage 1, 2, and 4S tumors presenting with whole chromosome 17 gain; and (3) the identification of 3p deletion as a hallmark of older age at diagnosis. CONCLUSION We propose a new regression model for improved patient outcome prediction, incorporating tumor stage, chromosome 17, and amplification/deletion status. These findings may prove highly valuable with respect to more reliable risk assessment, evaluation of clinical results, and optimization of current treatment protocols.


Nature Methods | 2013

The need for transparency and good practices in the qPCR literature

Stephen A. Bustin; Vladimir Benes; Jeremy A. Garson; Jan Hellemans; Jim F. Huggett; Mikael Kubista; Reinhold Mueller; Tania Nolan; Michael W. Pfaffl; Gregory L. Shipley; Carl T. Wittwer; Peter Schjerling; Philip J. R. Day; Mónica Abreu; Begoña Aguado; Jean-François Beaulieu; Anneleen Beckers; Sara Bogaert; John A. Browne; Fernando Carrasco-Ramiro; Liesbeth Ceelen; Kate L. Ciborowski; Pieter Cornillie; Stephanie Coulon; Ann Cuypers; Sara De Brouwer; Leentje De Ceuninck; Jurgen De Craene; Hélène De Naeyer; Ward De Spiegelaere

Two surveys of over 1,700 publications whose authors use quantitative real-time PCR (qPCR) reveal a lack of transparent and comprehensive reporting of essential technical information. Reporting standards are significantly improved in publications that cite the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines, although such publications are still vastly outnumbered by those that do not.


Genes, Chromosomes and Cancer | 1998

Genetic heterogeneity of neuroblastoma studied by comparative genomic hybridization

Jo Vandesompele; Nadine Van Roy; Mireille Van Gele; Genevieve Laureys; Peter P. Ambros; Pierre Heimann; Christine Devalck; Ed Schuuring; Penelope Brock; Jacques Otten; Jan Gyselinck; Anne De Paepe; Frank Speleman

Comparative genomic hybridization (CGH) analysis was performed on 36 neuroblastomas of both low and high stage of disease. This study significantly increases the number of neuroblastoma tumors studied by CGH. Analysis of larger series of tumors is particularly important in view of the different clinical subgroups that are recognized for this tumor. The present data and a comparison with all published CGH data on neuroblastoma provide further insights into the genetic heterogeneity of neuroblastoma. Stage 1, 2, and 4S tumors showed predominantly whole chromosome gains and losses. A similar pattern of whole chromosome imbalances, although less frequent, was observed in stage 3 and 4 tumors, in addition to partial chromosome gains and losses. An increase in chromosome 17 or 17q copy number was observed in 81% of tumors. The most frequent losses, either through partial or whole chromosome underrepresentation, were observed for 1p (25%), 3p (25%), 4p (14%), 9p (19%), 11q (28%), and 14q (31%). The presence of 3p, 11q or 14q deletions defines a genetic subset of neuroblastomas and contributes to the further genetic characterization of stage 3 and 4 tumors without MYCN amplification (MNA) and 1p deletion. The present study also provides additional evidence for a possible role of genes at 11q13 in neuroblastoma. In a few cases, 1p deletion or MNA detected by FISH or Southern blotting was not found by CGH, indicating that the use of a second, independent technique for evaluation of these genetic parameters is recommended. Genes Chromosomes Cancer 23:141–152, 1998.

Collaboration


Dive into the Nadine Van Roy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Speleman

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne De Paepe

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce Poppe

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar

Yves Benoit

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge