Nadja Møbjerg
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nadja Møbjerg.
Molecular Phylogenetics and Evolution | 2010
Aslak Jørgensen; Søren Faurby; Jesper Guldberg Hansen; Nadja Møbjerg; Reinhardt Møbjerg Kristensen
Tardigrades are microscopic ecdysozoans with a worldwide distribution covering marine, limnic and terrestrial habitats. They are regarded as a neglected phylum with regard to studies of their phylogeny. During the last decade molecular data have been included in the investigation of tardigrades. However, the marine arthrotardigrades are still poorly sampled due to their relative rarity, difficult identification and minute size even for tardigrades. In the present study, we have sampled various arthrotardigrades and sequenced the 18S and partial 28S ribosomal subunits. The phylogenetic analyses based on Bayesian inference and maximum parsimony inferred Heterotardigrada (Arthrotardigrada+Echiniscoidea) and Eutardigrada to be monophyletic. Arthrotardigrada was inferred to be paraphyletic as the monophyletic Echiniscoidea is included within the arthrotardigrades. The phylogenetic positions of Stygarctidae and Batillipedidae are poorly resolved with low branch support. The Halechiniscidae is inferred to be polyphyletic as the currently recognized Styraconyxinae is not part of the family. Archechiniscus is the sister-group to the Halechiniscidae and Orzeliscus is placed as one of the basal halechiniscids. The phylogeny of the included eutardigrade taxa resembles the current molecular phylogenies. The genetic diversity within Arthrotardigrada is much larger (18S 15.1-26.5%, 28S 7.2-20.7%) than within Eutardigrada (18S 1.0-12.6%, 28S 1.3-8.2%). This can be explained by higher substitution rates in the arthrotardigrades or by a much younger evolutionary age of the sampled eutardigrades.
Journal of Morphology | 2000
Nadja Møbjerg; Erik Larsen; Åse Jespersen
This study deals primarily with the morphology and ultrastructure of the pronephros in the green toad Bufo viridis during prometamorphosis when the pronephros and the developing mesonephros function simultaneously. Furthermore, the mesonephros was studied during pro‐ and postmetamorphosis with emphasis on the distal segments of the nephron. The paired kidneys consist of two cranial pronephroi immediately behind the gill region and two more caudal elongated mesonephroi. Each pronephros consists of a single convoluted tubule which opens into the coelom via three nephrostomes. This tubule is divided into three ciliated tubules, three proximal tubule branches, a common proximal tubule and a distal tubule, which in turn continues into the nephric duct. No intermediate segment is present. The length of the pronephric tubule is 12 mm, including the three branches of the ciliated tubules and proximal tubules. Primary urine is formed upon filtration from an external glomerulus, which is a convoluted capillary lined by podocytes, a specialization of the coelomic epithelium. From the coelom the filtrate is swept into the ciliated tubules. In the collecting duct system of the developing mesonephric nephron epithelial cells with conspicuous, apical osmiophilic granules appear in larvae of 9–10 mm. Heterocellularity of mixed intercalated (mitochondria rich) cells and principal cells is observed in the collecting duct system and nephric duct from a larval body length of 14 mm. As the proliferation of mitochondria‐rich cells proceeds, the osmiophilic granules disappear and are completely absent from the adult amphibian mesonephros. J. Morphol. 245:177–195, 2000.
Journal of Morphology | 2012
Dennis Persson; Kenneth A. Halberg; Aslak Jørgensen; Nadja Møbjerg; Reinhardt Møbjerg Kristensen
The position of Tardigrada in the animal tree of life is a subject that has received much attention, but still remains controversial. Whereas some think tardigrades should be categorized as cycloneuralians, most authors argue in favor of a phylogenetic position within Panarthropoda as a sister group to Arthropoda or Arthropoda + Onychophora. Thus far, neither molecular nor morphological investigations have provided conclusive results as to the tardigrade sister group relationships. In this article, we present a detailed description of the nervous system of the eutardigrade Halobiotus crispae, using immunostainings, confocal laser scanning microscopy, and computer‐aided three‐dimensional reconstructions supported by transmission electron microscopy. We report details regarding the structure of the brain as well as the ganglia of the ventral nerve cord. In contrast to the newest investigation, we find transverse commissures in the ventral ganglia, and our data suggest that the brain is partitioned into at least three lobes. Additionally, we can confirm the existence of a subpharyngeal ganglion previously called subesophagal ganglion. According to our results, the original suggestion of a brain comprised of at least three parts cannot be rejected, and the data presented supports a sister group relationship of Tardigrada to 1) Arthropoda or 2) Onychophora or 3) Arthropoda + Onychophora. J. Morphol. 2012.
The Journal of Experimental Biology | 2009
Kenneth A. Halberg; Dennis Persson; Hans Ramløv; Peter Westh; Reinhardt Møbjerg Kristensen; Nadja Møbjerg
SUMMARY Tardigrades exhibit a remarkable resilience against environmental extremes. In the present study, we investigate mechanisms of survival and physiological adaptations associated with sub-zero temperatures and severe osmotic stress in two commonly found cyclomorphic stages of the marine eutardigrade Halobiotus crispae. Our results show that only animals in the so-called pseudosimplex 1 stage are freeze tolerant. In pseudosimplex 1, as well as active-stage animals kept at a salinity of 20 ppt, ice formation proceeds rapidly at a crystallization temperature of around –20°C, revealing extensive supercooling in both stages, while excluding the presence of physiologically relevant ice-nucleating agents. Experiments on osmotic stress tolerance show that the active stage tolerates the largest range of salinities. Changes in body volume and hemolymph osmolality of active-stage specimens (350–500 μm) were measured following salinity transfers from 20 ppt. Hemolymph osmolality at 20 ppt was approximately 950 mOsm kg–1. Exposure to hypo-osmotic stress in 2 and 10 ppt caused (1) rapid swelling followed by a regulatory volume decrease, with body volume reaching control levels after 48 h and (2) decrease in hemolymph osmolality followed by a stabilization at significantly lower osmolalities. Exposure to hyperosmotic stress in 40 ppt caused (1) rapid volume reduction, followed by a regulatory increase, but with a new steady-state after 24 h below control values and (2) significant increase in hemolymph osmolality. At any investigated external salinity, active-stage H. crispae hyper-regulate, indicating a high water turnover and excretion of dilute urine. This is likely a general feature of eutardigrades.
The Journal of Membrane Biology | 2006
Erik Larsen; Nadja Møbjerg
The Na+ recirculation theory for solute-coupled fluid absorption is an expansion of the local osmosis concept introduced by Curran and analyzed by Diamond & Bossert. Based on studies on small intestine the theory assumes that the observed recirculation of Na+ serves regulation of the osmolarity of the absorbate. Mathematical modeling reproducing bioelectric and hydrosmotic properties of small intestine and proximal tubule, respectively, predicts a significant range of observations such as isosmotic transport, hyposmotic transport, solvent drag, anomalous solvent drag, the residual hydraulic permeability in proximal tubule of AQP1 (−/−) mice, and the inverse relationship between hydraulic permeability and the concentration difference needed to reverse transepithelial water flow. The model reproduces the volume responses of cells and lateral intercellular space (lis) following replacement of luminal NaCl by sucrose as well as the linear dependence of volume absorption on luminal NaCl concentration. Analysis of solvent drag on Na+ in tight junctions provides explanation for the surprisingly high metabolic efficiency of Na+ reabsorption. The model predicts and explains low metabolic efficiency in diluted external baths. Hyperosmolarity of lis is governed by the hydraulic permeability of the apical plasma membrane and tight junction with 6–7 mOsm in small intestine and ≤ 1 mOsm in proximal tubule. Truly isosmotic transport demands a Na+ recirculation of 50–70% in small intestine but might be barely measurable in proximal tubule. The model fails to reproduce a certain type of observations: The reduced volume absorption at transepithelial osmotic equilibrium in AQP1 knockout mice, and the stimulated water absorption by gallbladder in diluted external solutions. Thus, it indicates cellular regulation of apical Na+ uptake, which is not included in the mathematical treatment.
Journal of Morphology | 2009
Kenneth A. Halberg; Dennis Persson; Nadja Møbjerg; Andreas Wanninger; Reinhardt Møbjerg Kristensen
The muscular architecture of Halobiotus crispae (Eutardigrada: Hypsibiidae) was examined by means of fluorescent‐coupled phalloidin in combination with confocal laser scanning microscopy and computer‐aided three‐dimensional reconstruction, in addition to light microscopy (Nomarski), scanning electron microscopy, and transmission electron microscopy (TEM). The somatic musculature of H. crispae is composed of structurally independent muscle fibers, which can be divided into a dorsal, ventral, dorsoventral, and a lateral musculature. Moreover, a distinct leg musculature is found. The number and arrangement of muscles differ in each leg. Noticeably, the fourth leg contains much fewer muscles when compared with the other legs. Buccopharyngeal musculature (myoepithelial muscles), intestinal musculature, and cloacal musculature comprise the animals visceral musculature. TEM of stylet and leg musculature revealed ultrastructural similarities between these two muscle groups. Furthermore, microtubules are found in the epidermal cells of both leg and stylet muscle attachments. This would indicate that the stylet and stylet glands are homologues to the claw and claw glands, respectively. When comparing with previously published data on both heterotardigrade and eutardigrade species, it becomes obvious that eutardigrades possess very similar numbers and arrangement of muscles, yet differ in a number of significant details of their myoanatomy. This study establishes a morphological framework for the use of muscular architecture in elucidating tardigrade phylogeny. J. Morphol. 2009.
Acta Physiologica | 2009
Erik Larsen; Niels J. Willumsen; Nadja Møbjerg; Jens Nørkær Sørensen
Solute‐coupled water transport and isotonic transport are basic functions of low‐ and high‐resistance epithelia. These functions are studied with the epithelium bathed on the two sides with physiological saline of similar composition. Hence, at transepithelial equilibrium water enters the epithelial cells from both sides, and with the reflection coefficient of tight junction being larger than that of the interspace basement membrane, all of the water leaves the epithelium through the interspace basement membrane. The common design of transporting epithelia leads to the theory that an osmotic coupling of water absorption to ion flow is energized by lateral Na+/K+ pumps. We show that the theory accounts quantitatively for steady‐ and time dependent states of solute‐coupled fluid uptake by toad skin epithelium. Our experimental results exclude definitively three alternative theories of epithelial solute–water coupling: stoichiometric coupling at the molecular level by transport proteins like SGLT1, electro‐osmosis and a ‘junctional fluid transfer mechanism’. Convection‐diffusion out of the lateral space constitutes the fundamental problem of isotonic transport by making the emerging fluid hypertonic relative to the fluid in the lateral intercellular space. In the Na+ recirculation theory the ‘surplus of solutes’ is returned to the lateral space via the cells energized by the lateral Na+/K+ pumps. We show that this theory accounts quantitatively for isotonic and hypotonic transport at transepithelial osmotic equilibrium as observed in toad skin epithelium in vitro. Our conclusions are further developed for discussing their application to solute–solvent coupling in other vertebrate epithelia such as small intestine, proximal tubule of glomerular kidney and gallbladder. Evidence is discussed that the Na+ recirculation theory is not irreconcilable with the wide range of metabolic cost of Na+ transport observed in fluid‐transporting epithelia.
Journal of Marine Systems | 1997
K. Falk; Christian Hjort; K.D. Christensen; M. Elander; M. Ericson; Kaj Kampp; Reinhardt Møbjerg Kristensen; Nadja Møbjerg; S. Møller; Jan Marcin Węsławski
Abstract A small seabird community depends on the resources of the Northeast Water (NEW) polynya. In spring, at least 1000 King Eiders and 2500 Common Eiders form pre-breeding congregations at Ob Bank before dispersing in mid June to breeding areas. The most abundant species is the Fulmar, which breeds in six colonies with a total of 2550 “apparently occupied sites”, corresponding to approx. 1475 active pairs in 1993. Kittiwakes occupied almost 900 sites at Mallemukfjeld, with an estimated 733 breeding pairs. The entire NEW area probably holds 400–500 pairs of Ivory Gulls, and about 500 individuals were associated with a colony on Henrik Kroyer Holme; this is one of the worlds largest known colonies. Sabines Gulls breed at the same islands and on Kilen (approx. 50 pairs in each place). Small colonies (total less than 1000 birds) of Arctic Terns are distributed along the edge of the polynya, with the largest colony of about 100 pairs on Henrik Kroyer Holme. The Black Guillemot is the only breeding auk species ( Apart from the benthic foraging eiders and the Black Guillemot, the seabird community of NEW consists of surface feeders—Fulmars and gulls—dependent on small fish and zooplankton. During their stay in the NEW area, the five most abundant surface feeders will annually consume approximately 243,000 kg (wet weight) of food, of which the Fulmars alone take 67%. Food demand in relation to area of open water in the polynya is highest in spring (approx. 0.2 kg/km 2 ), which is
Biochimica et Biophysica Acta | 2002
Niels J. Willumsen; Jan Amstrup; Nadja Møbjerg; Åse Jespersen; Poul Kristensen; E. Hviid Larsen
The mitochondria-rich (mr) cell of amphibian skin epithelium is differentiated as a highly specialised pathway for passive transepithelial transport of chloride. The apical membrane of mr cells expresses several types of Cl(-) channels, of which the function of only two types has been studied in detail. (i) One type of channel is gated by voltage and external chloride concentration. This intriguing type of regulation leads to opening of channels only if [Cl(-)](o) is in the millimolar range and if the electrical potential is of a polarity that secures an inwardly directed net flux of this ion. Reversible voltage activations of the conductance proceed with long time constants, which depend on V in such a way that the rate of conductance activation increases when V is clamped at more negative values (serosal bath grounded). The gating seems to involve processes that are dependent on F-actin localised in the submembrane domain in the neck region of the flask-shaped mr cell. (ii) The other identified Cl(-) pathway of mr cells is mediated by small-conductance apical CFTR chloride channels as concluded from its activation via beta-adrenergic receptors, ion selectivity, genistein stimulation and inhibition by glibenclamide. bbCFTR has been cloned, and immunostaining has shown that the gene product is selectively expressed in mr cells. There is cross-talk between the two pathways in the sense that activation of the conductance of the mr cell by voltage clamping excludes activation via receptor occupation, and vice versa. The mechanism of this cross-talk is unknown.
Journal of Morphology | 2014
Dennis Persson; Kenneth A. Halberg; Aslak Jørgensen; Nadja Møbjerg; Reinhardt Møbjerg Kristensen
Knowledge of tardigrade brain structure is important for resolving the phylogenetic relationships of Tardigrada. Here, we present new insight into the morphology of the brain in a marine arthrotardigrade, Actinarctus doryphorus, based on transmission electron microscopy, supported by scanning electron microscopy, conventional light microscopy as well as confocal laser scanning microscopy. Arthrotardigrades contain a large number of plesiomorphic characters and likely represent ancestral tardigrades. They often have segmented body outlines and each trunk segment, with its paired set of legs, may have up to five sensory appendages. Noticeably, the head carries numerous cephalic appendages that are structurally equivalent to the sensory appendages of the trunk segments. Our data reveal that the brain of A. doryphorus is partitioned into three paired lobes, and that these lobes exhibit a more pronounced separation as compared to that of eutardigrades. The first brain lobe in A. doryphorus is located anteriodorsally, with the second lobe just below it in an anterioventral position. Both of these two paired lobes are located anterior to the buccal tube. The third pair of brain lobes are situated posterioventrally to the first two lobes, and flank the buccal tube. In addition, A. doryphorus possesses a subpharyngeal ganglion, which is connected with the first of the four ventral trunk ganglia. The first and second brain lobes in A. doryphorus innervate the clavae and cirri of the head. The innervations of these structures indicate a homology between, respectively, the clavae and cirri of A. doryphorus and the temporalia and papilla cephalica of eutardigrades. The third brain lobes innervate the buccal lamella and the stylets as described for eutardigrades. Collectively, these findings suggest that the head region of extant tardigrades is the result of cephalization of multiple segments. Our results on the brain anatomy of Actinarctus doryphorus support the monophyly of Panarthropoda. J. Morphol. 275:173–190, 2014.