Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nagasuma Chandra is active.

Publication


Featured researches published by Nagasuma Chandra.


Briefings in Bioinformatics | 2009

Flux balance analysis of biological systems: applications and challenges

Karthik Raman; Nagasuma Chandra

Systems level modelling and simulations of biological processes are proving to be invaluable in obtaining a quantitative and dynamic perspective of various aspects of cellular function. In particular, constraint-based analyses of metabolic networks have gained considerable popularity for simulating cellular metabolism, of which flux balance analysis (FBA), is most widely used. Unlike mechanistic simulations that depend on accurate kinetic data, which are scarcely available, FBA is based on the principle of conservation of mass in a network, which utilizes the stoichiometric matrix and a biologically relevant objective function to identify optimal reaction flux distributions. FBA has been used to analyse genome-scale reconstructions of several organisms; it has also been used to analyse the effect of perturbations, such as gene deletions or drug inhibitions in silico. This article reviews the usefulness of FBA as a tool for gaining biological insights, advances in methodology enabling integration of regulatory information and thermodynamic constraints, and finally addresses the challenges that lie ahead. Various use scenarios and biological insights obtained from FBA, and applications in fields such metabolic engineering and drug target identification, are also discussed. Genome-scale constraint-based models have an immense potential for building and testing hypotheses, as well as to guide experimentation.


PLOS Computational Biology | 2005

Flux Balance Analysis of Mycolic Acid Pathway: Targets for Anti-Tubercular Drugs

Karthik Raman; Preethi Rajagopalan; Nagasuma Chandra

Mycobacterium tuberculosis is the focus of several investigations for design of newer drugs, as tuberculosis remains a major epidemic despite the availability of several drugs and a vaccine. Mycobacteria owe many of their unique qualities to mycolic acids, which are known to be important for their growth, survival, and pathogenicity. Mycolic acid biosynthesis has therefore been the focus of a number of biochemical and genetic studies. It also turns out to be the pathway inhibited by front-line anti-tubercular drugs such as isoniazid and ethionamide. Recent years have seen the emergence of systems-based methodologies that can be used to study microbial metabolism. Here, we seek to apply insights from flux balance analyses of the mycolic acid pathway (MAP) for the identification of anti-tubercular drug targets. We present a comprehensive model of mycolic acid synthesis in the pathogen M. tuberculosis involving 197 metabolites participating in 219 reactions catalysed by 28 proteins. Flux balance analysis (FBA) has been performed on the MAP model, which has provided insights into the metabolic capabilities of the pathway. In silico systematic gene deletions and inhibition of InhA by isoniazid, studied here, provide clues about proteins essential for the pathway and hence lead to a rational identification of possible drug targets. Feasibility studies using sequence analysis of the M. tuberculosis H37Rv and human proteomes indicate that, apart from the known InhA, potential targets for anti-tubercular drug design are AccD3, Fas, FabH, Pks13, DesA1/2, and DesA3. Proteins identified as essential by FBA correlate well with those previously identified experimentally through transposon site hybridisation mutagenesis. This study demonstrates the application of FBA for rational identification of potential anti-tubercular drug targets, which can indeed be a general strategy in drug design. The targets, chosen based on the critical points in the pathway, form a ready shortlist for experimental testing.


BMC Bioinformatics | 2008

PocketMatch: A new algorithm to compare binding sites in protein structures

Kalidas Yeturu; Nagasuma Chandra

BackgroundRecognizing similarities and deriving relationships among protein molecules is a fundamental requirement in present-day biology. Similarities can be present at various levels which can be detected through comparison of protein sequences or their structural folds. In some cases similarities obscure at these levels could be present merely in the substructures at their binding sites. Inferring functional similarities between protein molecules by comparing their binding sites is still largely exploratory and not as yet a routine protocol. One of the main reasons for this is the limitation in the choice of appropriate analytical tools that can compare binding sites with high sensitivity. To benefit from the enormous amount of structural data that is being rapidly accumulated, it is essential to have high throughput tools that enable large scale binding site comparison.ResultsHere we present a new algorithm PocketMatch for comparison of binding sites in a frame invariant manner. Each binding site is represented by 90 lists of sorted distances capturing shape and chemical nature of the site. The sorted arrays are then aligned using an incremental alignment method and scored to obtain PMScores for pairs of sites. A comprehensive sensitivity analysis and an extensive validation of the algorithm have been carried out. A comparison with other site matching algorithms is also presented. Perturbation studies where the geometry of a given site was retained but the residue types were changed randomly, indicated that chance similarities were virtually non-existent. Our analysis also demonstrates that shape information alone is insufficient to discriminate between diverse binding sites, unless combined with chemical nature of amino acids.ConclusionA new algorithm has been developed to compare binding sites in accurate, efficient and high-throughput manner. Though the representation used is conceptually simplistic, we demonstrate that along with the new alignment strategy used, it is sufficient to enable binding comparison with high sensitivity. Novel methodology has also been presented for validating the algorithm for accuracy and sensitivity with respect to geometry and chemical nature of the site. The method is also fast and takes about 1/250thsecond for one comparison on a single processor. A parallel version on BlueGene has also been implemented.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2001

Interaction of coumarin derivatives with human serum albumin: investigation by fluorescence spectroscopic technique and modeling studies

J. Shobini; Anil K. Mishra; K Sandhya; Nagasuma Chandra

Interactions of several 7-aminocoumarins with human serum albumin (HSA) were studied by using fluorescence spectroscopic technique and modeling studies. There is a large change in fluorescence spectral parameters like intensity, emission maxima and anisotropy for all aminocoumarins. There were two binding sites for cou-1, 311 and a single binding site for other coumarins. The binding constant(s) are large for all coumarins reflective of a strong binding. These spectral studies show that structural variants at the third, fourth and seventh position affects binding. The probable location of these coumarins in domain II has been predicted based on modeling. The effect of structural modification on the efficiency of binding was obtained for various other coumarins, using modeling.


Journal of Bacteriology | 2003

Crystal Structures of Mycobacterium smegmatis RecA and Its Nucleotide Complexes

Sunando Datta; R. Krishna; N. Ganesh; Nagasuma Chandra; K. Muniyappa; M. Vijayan

The crystal structures of Mycobacterium smegmatis RecA (RecA(Ms)) and its complexes with ADP, ATPgammaS, and dATP show that RecA(Ms) has an expanded binding site like that in Mycobacterium tuberculosis RecA, although there are small differences between the proteins in their modes of nucleotide binding. Nucleotide binding is invariably accompanied by the movement of Gln 196, which appears to provide the trigger for transmitting the effect of nucleotide binding to the DNA-binding loops. These observations provide a framework for exploring the known properties of the RecA proteins.


Journal of Biological Chemistry | 2004

δ-Aminolevulinic Acid Dehydratase from Plasmodium falciparum INDIGENOUS VERSUS IMPORTED

Shanmugham Dhanasekaran; Nagasuma Chandra; B. K. Chandrasekhar Sagar; Pundi N. Rangarajan; Govindarajan Padmanaban

The heme biosynthetic pathway of the malaria parasite is a drug target and the import of host δ-aminolevulinate dehydratase (ALAD), the second enzyme of the pathway, from the red cell cytoplasm by the intra erythrocytic malaria parasite has been demonstrated earlier in this laboratory. In this study, ALAD encoded by the Plasmodium falciparum genome (PfALAD) has been cloned, the protein overexpressed in Escherichia coli, and then characterized. The mature recombinant enzyme (rPfALAD) is enzymatically active and behaves as an octamer with a subunit Mr of 46,000. The enzyme has an alkaline pH optimum of 8.0 to 9.0. rPfALAD does not require any metal ion for activity, although it is stimulated by 20-30% upon addition of Mg2+. The enzyme is inhibited by Zn2+ and succinylacetone. The presence of PfALAD in P. falciparum can be demonstrated by Western blot analysis and immunoelectron microscopy. The enzyme has been localized to the apicoplast of the malaria parasite. Homology modeling studies reveal that PfALAD is very similar to the enzyme species from Pseudomonas aeruginosa, but manifests features that are unique and different from plant ALADs as well as from those of the bacterium. It is concluded that PfALAD, while resembling plant ALADs in terms of its alkaline pH optimum and apicoplast localization, differs in its Mg2+ independence for catalytic activity or octamer stabilization. Expression levels of PfALAD in P. falciparum, based on Western blot analysis, immunoelectron microscopy, and EDTA-resistant enzyme activity assay reveals that it may account for about 10% of the total ALAD activity in the parasite, the rest being accounted for by the host enzyme imported by the parasite. It is proposed that the role of PfALAD may be confined to heme synthesis in the apicoplast that may not account for the total de novo heme biosynthesis in the parasite.


Proteins | 2003

Structural studies on MtRecA-nucleotide complexes: Insights into DNA and nucleotide binding and the structural signature of NTP recognition

Sunando Datta; N. Ganesh; Nagasuma Chandra; K. Muniyappa; M. Vijayan

RecA protein plays a crucial role in homologous recombination and repair of DNA. Central to all activities of RecA is its binding to Mg+2‐ATP. The active form of the protein is a helical nucleoprotein filament containing the nucleotide cofactor and single‐stranded DNA. The stability and structure of the helical nucleoprotein filament formed by RecA are modulated by nucleotide cofactors. Here we report crystal structures of a MtRecA‐ADP complex, complexes with ATPγS in the presence and absence of magnesium as well as a complex with dATP and Mg+2. Comparison with the recently solved crystal structures of the apo form as well as a complex with ADP‐AlF4 confirms an expansion of the P‐loop region in MtRecA, compared to its homologue in Escherichia coli, correlating with the reduced affinity of MtRecA for ATP. The ligand bound structures reveal subtle variations in nucleotide conformations among different nucleotides that serve in maintaining the network of interactions crucial for nucleotide binding. The nucleotide binding site itself, however, remains relatively unchanged. The analysis also reveals that ATPγS rather than ADP‐AlF4 is structurally a better mimic of ATP. From among the complexed structures, a definition for the two DNA‐binding loops L1 and L2 has clearly emerged for the first time and provides a basis to understand DNA binding by RecA. The structural information obtained from these complexes correlates well with the extensive biochemical data on mutants available in the literature, contributing to an understanding of the role of individual residues in the nucleotide binding pocket, at the molecular level. Modeling studies on the mutants again point to the relative rigidity of the nucleotide binding site. Comparison with other NTP binding proteins reveals many commonalties in modes of binding by diverse members in the structural family, contributing to our understanding of the structural signature of NTP recognition. Proteins 2003;50:474–485.


Journal of Biological Chemistry | 2010

The Multifunctional PE_PGRS11 Protein from Mycobacterium tuberculosis Plays a Role in Regulating Resistance to Oxidative Stress

Rashmi Chaturvedi; Kushagra Bansal; Yeddula Narayana; Nisha Kapoor; Namineni Sukumar; Shambhuprasad Kotresh Togarsimalemath; Nagasuma Chandra; Saurabh Mishra; Parthasarathi Ajitkumar; Beenu Joshi; Vishwa Mohan Katoch; Shripad A. Patil; Kithiganahalli Narayanaswamy Balaji

Mycobacterium tuberculosis utilizes unique strategies to survive amid the hostile environment of infected host cells. Infection-specific expression of a unique mycobacterial cell surface antigen that could modulate key signaling cascades can act as a key survival strategy in curtailing host effector responses like oxidative stress. We demonstrate here that hypothetical PE_PGRS11 ORF encodes a functional phosphoglycerate mutase. The transcriptional analysis revealed that PE_PGRS11 is a hypoxia-responsive gene, and enforced expression of PE_PGRS11 by recombinant adenovirus or Mycobacterium smegmatis imparted resistance to alveolar epithelial cells against oxidative stress. PE_PGRS11-induced resistance to oxidative stress necessitated the modulation of genetic signatures like induced expression of Bcl2 or COX-2. This modulation of specific antiapoptotic molecular signatures involved recognition of PE_PGRS11 by TLR2 and subsequent activation of the PI3K-ERK1/2-NF-κB signaling axis. Furthermore, PE_PGRS11 markedly diminished H2O2-induced p38 MAPK activation. Interestingly, PE_PGRS11 protein was exposed at the mycobacterial cell surface and was involved in survival of mycobacteria under oxidative stress. Furthermore, PE_PGRS11 displayed differential B cell responses during tuberculosis infection. Taken together, our investigation identified PE_PGRS11 as an in vivo expressed immunodominant antigen that plays a crucial role in modulating cellular life span restrictions imposed during oxidative stress by triggering TLR2-dependent expression of COX-2 and Bcl2. These observations clearly provide a mechanistic basis for the rescue of pathogenic Mycobacterium-infected lung epithelial cells from oxidative stress.


Biochemistry | 2002

Identification of a 34 amino acid stretch within the C-terminus of histone H1 as the DNA-condensing domain by site-directed mutagenesis.

M.M. Srinivas Bharath; S. Ramesh; Nagasuma Chandra; Manchanahalli R. Satyanarayana Rao

The C-terminus of histone H1 is necessary for the folding of polynucleosomal arrays into higher-order structure(s) and contains octapeptide repeats each having DNA binding S/TPKK motifs. These repeat motifs were earlier shown to mimic the DNA/chromatin-condensing properties of the C-terminus of histone H1 (Khadake, J. R., and Rao, M. R. S. (1995) Biochemistry 36, 1041-1051). In the present study, we have generated a series of C-terminal mutants of rat histone H1d and studied their DNA-condensation properties. The single proline to alanine mutation in the S/TPKK motifs either singly or in combination resulted in only a 20% decrease in the DNA-condensation property of histone H1. Deletion of all the three S/TPKK motifs resulted in a 45% decrease in DNA condensation. When the three octapeptide repeats encompassing the S/TPKK motifs were deleted, there was again a 45% decrease in DNA condensation. On the other hand, when the entire 34 amino acid stretch (residue 145-178) was deleted, there was nearly a 90% decrease in DNA condensation brought about by histone H1d. Interestingly, deletion of the 10 amino acid spacer between the octapeptide repeats (residues 161-170) also reduced the DNA condensation by 70%. Deletion of the region (residues 115-141) immediately before the 34 amino acid stretch and after the globular domain and the region (residues 184-218) immediately after the 34 amino acid stretch had only a marginal effect on DNA condensation. The importance of the 34 amino acid stretch, including the 10 amino acid spacer, was also demonstrated with the recombinant histone H1d C-terminus. We have also determined the induced alpha-helicity of histone H1 and its various mutants in the presence of 60% trifluoroethanol, and the experimentally determined induced helical contents agree with the theoretical predictions of secondary structural elements in the C-terminus of histone H1d. Thus, we have identified a 34 amino acid stretch in the C-terminus of histone H1d as the DNA-condensing domain.


Proteins | 2000

Sequence and structural determinants of mannose recognition

Gosu Ramachandraiah; Nagasuma Chandra

Mannose, an abundant cell surface monosaccharide binds to a diverse set of receptors, which are involved in a variety of important cellular processes. Structural analysis has been carried out on all the proteins containing non‐covalently bound mannose as a monosaccharide in the Protein Data Bank, to identify common recognition principles. Proteins, highly specific to mannose, belonging to the super family of bulb lectins, are found to contain a consensus sequence motif QXDXNXVXY, which has been identified to be essential for mannose binding. Analysis of this motif in the crystal structures of bulb lectins has led to the understanding of the contribution of individual residues in mannose recognition. Comparison with other mannose binding proteins, reveals common hydrogen bonding patterns in all of them, despite differences in sequence, overall fold and the substructures at the binding sites of individual proteins. A database analysis also suggests that although the topology of the backbone, as at the binding site in bulb lectins, can generate mannose binding capability in a few other proteins, sequence and disposition of not only the residues in the motif, but also the residues in the neighborhood play a crucial role in allowing that property to be retained. Proteins 2000;39:358–364.

Collaboration


Dive into the Nagasuma Chandra's collaboration.

Top Co-Authors

Avatar

M. Vijayan

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karthik Raman

Indian Institute of Technology Madras

View shared research outputs
Top Co-Authors

Avatar

Praveen Anand

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Raghu Bhagavat

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Sumanta Mukherjee

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

K. Muniyappa

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Priyanka Baloni

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Soma Ghosh

Indian Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge