Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raghu Bhagavat is active.

Publication


Featured researches published by Raghu Bhagavat.


PLOS ONE | 2011

Structural Annotation of Mycobacterium tuberculosis Proteome

Praveen Anand; Sandhya Sankaran; Sumanta Mukherjee; Kalidas Yeturu; Roman A. Laskowski; Anshu Bhardwaj; Raghu Bhagavat; Samir K. Brahmachari; Nagasuma Chandra

Of the ∼4000 ORFs identified through the genome sequence of Mycobacterium tuberculosis (TB) H37Rv, experimentally determined structures are available for 312. Since knowledge of protein structures is essential to obtain a high-resolution understanding of the underlying biology, we seek to obtain a structural annotation for the genome, using computational methods. Structural models were obtained and validated for ∼2877 ORFs, covering ∼70% of the genome. Functional annotation of each protein was based on fold-based functional assignments and a novel binding site based ligand association. New algorithms for binding site detection and genome scale binding site comparison at the structural level, recently reported from the laboratory, were utilized. Besides these, the annotation covers detection of various sequence and sub-structural motifs and quaternary structure predictions based on the corresponding templates. The study provides an opportunity to obtain a global perspective of the fold distribution in the genome. The annotation indicates that cellular metabolism can be achieved with only 219 folds. New insights about the folds that predominate in the genome, as well as the fold-combinations that make up multi-domain proteins are also obtained. 1728 binding pockets have been associated with ligands through binding site identification and sub-structure similarity analyses. The resource (http://proline.physics.iisc.ernet.in/Tbstructuralannotation), being one of the first to be based on structure-derived functional annotations at a genome scale, is expected to be useful for better understanding of TB and for application in drug discovery. The reported annotation pipeline is fairly generic and can be applied to other genomes as well.


Journal of Clinical Bioinformatics | 2011

Virtual screening, identification and experimental testing of novel inhibitors of PBEF1/Visfatin/NMPRTase for glioma therapy.

Nagasuma Chandra; Raghu Bhagavat; Eshita Sharma; Peddagangannagari Sreekanthreddy; Kumaravel Somasundaram

BackgroundPre-B-cell colony enhancing factor 1 gene (PBEF1) encodes nicotinamide phosphoribosyltransferase (NMPRTase), which catalyses the rate limiting step in the salvage pathway of NAD+ metabolism in mammalian cells. PBEF1 transcript and protein levels have been shown to be elevated in glioblastoma and a chemical inhibitor of NMPRTase has been shown to specifically inhibit cancer cells.MethodsVirtual screening using docking was used to screen a library of more than 13,000 chemical compounds. A shortlisted set of compounds were tested for their inhibition activity in vitro by an NMPRTase enzyme assay. Further, the ability of the compounds to inhibit glioma cell proliferation was carried out.ResultsVirtual screening resulted in short listing of 34 possible ligands, of which six were tested experimentally, using the NMPRTase enzyme inhibition assay and further with the glioma cell viability assays. Of these, two compounds were found to be significantly efficacious in inhibiting the conversion of nicotinamide to NAD+, and out of which, one compound, 3-amino-2-benzyl-7-nitro-4-(2-quinolyl-)-1,2-dihydroisoquinolin-1-one, was found to inhibit the growth of a PBEF1 over expressing glioma derived cell line U87 as well.ConclusionsThus, a novel inhibitor has been identified through a structure based drug discovery approach and is further supported by experimental evidence.


Protein Expression and Purification | 2012

Cloning, expression, purification, and biochemical characterisation of the FIC motif containing protein of Mycobacterium tuberculosis.

Saurabh Mishra; Raghu Bhagavat; Nagasuma Chandra; Namperumalsamy Vijayarangan; Haryadi Rajeswari; Parthasarathi Ajitkumar

The role of FIC (Filamentation induced by cAMP)(2) domain containing proteins in the regulation of many vital pathways, mostly through the transfer of NMPs from NTPs to specific target proteins (NMPylation), in microorganisms, higher eukaryotes, and plants is emerging. The identity and function of FIC domain containing protein of the human pathogen, Mycobacterium tuberculosis, remains unknown. In this regard, M. tuberculosis fic gene (Mtfic) was cloned, overexpressed, and purified to homogeneity for its biochemical characterisation. It has the characteristic FIC motif, HPFREGNGRSTR (HPFxxGNGRxxR), spanning 144th to 155th residue. Neither the His-tagged nor the GST-tagged MtFic protein, overexpressed in Escherichia coli, nor expression of Mtfic in Mycobacterium smegmatis, yielded the protein in the soluble fraction. However, the maltose binding protein (MBP) tagged MtFic (MBP-MtFic) could be obtained partly in the soluble fraction. The cloned, overexpressed, and purified recombinant MBP-MtFic showed conversion of ATP, GTP, CTP, and UTP into AMP, GMP, CMP, and UMP, respectively. Sequence alignment with several FIC motif containing proteins, complemented with homology modeling on the FIC motif containing protein, VbhT of Bartonella schoenbuchensis as the template, showed conservation and interaction of residues constituting the FIC domain. Site-specific mutagenesis of the His144, or Glu148, or Asn150 of the FIC motif, or of Arg87 residue that constitutes the FIC domain, or complete deletion of the FIC motif, abolished the NTP to NMP conversion activity. The design of NMP formation assay using the recombinant, soluble MtFic would enable identification of its target substrate for NMPylation.


FEBS Journal | 2016

Hypothetical protein Rv3423.1 of Mycobacterium tuberculosis is a histone acetyltransferase

Leny Jose; Raghu Bhagavat; Roshna Lawrence Gomez; Aneesh Chandran; Sajith Raghunandanan; Ramakrishnapillai V. Omkumar; Nagasuma Chandra; Sathish Mundayoor; Ramakrishnan Ajay Kumar

We isolated an 8 kDa mycobacterial hypothetical protein, Rv3423.1, from the chromatin of human macrophages infected with Mycobacterium tuberculosis H37Rv. Bioinformatics predictions followed by in vitro biochemical assays with purified recombinant protein showed that Rv3423.1 is a novel histone acetyltransferase that acetylates histone H3 at the K9/K14 positions. Transient transfection of macrophages containing GFP‐tagged histone H1 with RFP‐tagged Rv3423.1 revealed that the protein co‐localizes with the chromatin in the nucleus. Co‐immunoprecipitation assays confirmed that the Rv3423.1–histone interaction is specific. Rv3423.1 protein was detected in the culture filtrate of virulent but not avirulent M. tuberculosis. Infection of macrophages with recombinant Mycobacterium smegmatis constitutively expressing Rv3423.1 resulted in a significant increase in the number of intracellular bacteria. However, the protein did not seem to offer any growth advantage to free‐living recombinant M. smegmatis. It is highly likely that, by binding to the host chromatin, this histone acetyltransferase from M. tuberculosis may manipulate the expression of host genes involved in anti‐inflammatory responses to evade clearance and to survive in the intracellular environment.


Tuberculosis | 2016

A comparative analysis of the DNA recombination repair pathway in mycobacterial genomes

Amandeep Singh; Raghu Bhagavat; M. Vijayan; Nagasuma Chandra

In prokaryotes, repair by homologous recombination provides a major means to reinstate the genetic information lost in DNA damage. Recombination repair pathway in mycobacteria has multiple differences as compared to that in Escherichia coli. Of about 20 proteins known to be involved in the pathway, a set of 9 proteins, namely, RecF, RecO, RecR, RecA, SSBa, RuvA, RuvB and RuvC was found to be indispensable among the 43 mycobacterial strains. A domain level analysis indicated that most domains involved in recombination repair are unique to these proteins and are present as single copies in the genomes. Synteny analysis reveals that the gene order of proteins involved in the pathway is not conserved, suggesting that they may be regulated differently in different species. Sequence conservation among the same protein from different strains suggests the importance of RecO-RecA and RecFOR-RecA presynaptic pathways in the repair of double strand-breaks and single strand-breaks respectively. New annotations obtained from the analysis, include identification of a protein with a probable Holliday junction binding role present in 41 mycobacterial genomes and that of a RecB-like nuclease, containing a cas4 domain, present in 42 genomes. New insights into the binding of small molecules to the relevant proteins are provided by binding pocket analysis using three dimensional structural models. Analysis of the various features of the recombination repair pathway, presented here, is likely to provide a framework for further exploring stress response and emergence of drug resistance in mycobacteria.


Glycobiology | 2014

Common recognition principles across diverse sequence and structural families of sialic acid binding proteins

Raghu Bhagavat; Nagasuma Chandra

Sialic acids form a large family of 9-carbon monosaccharides and are integral components of glycoconjugates. They are known to bind to a wide range of receptors belonging to diverse sequence families and fold classes and are key mediators in a plethora of cellular processes. Thus, it is of great interest to understand the features that give rise to such a recognition capability. Structural analyses using a non-redundant data set of known sialic acid binding proteins was carried out, which included exhaustive binding site comparisons and site alignments using in-house algorithms, followed by clustering and tree computation, which has led to derivation of sialic acid recognition principles. Although the proteins in the data set belong to several sequence and structure families, their binding sites could be grouped into only six types. Structural comparison of the binding sites indicates that all sites contain one or more different combinations of key structural features over a common scaffold. The six binding site types thus serve as structural motifs for recognizing sialic acid. Scanning the motifs against a non-redundant set of binding sites from PDB indicated the motifs to be specific for sialic acid recognition. Knowledge of determinants obtained from this study will be useful for detecting function in unknown proteins. As an example analysis, a genome-wide scan for the motifs in structures of Mycobacterium tuberculosis proteome identified 17 hits that contain combinations of the features, suggesting a possible function of sialic acid binding by these proteins.


Proteins | 2017

Deciphering common recognition principles of nucleoside mono/di and tri-phosphates binding in diverse proteins via structural matching of their binding sites

Raghu Bhagavat; Narayanaswamy Srinivasan; Nagasuma Chandra

Nucleoside triphosphate (NTP) ligands are of high biological importance and are essential for all life forms. A pre‐requisite for them to participate in diverse biochemical processes is their recognition by diverse proteins. It is thus of great interest to understand the basis for such recognition in different proteins. Towards this, we have used a structural bioinformatics approach and analyze structures of 4677 NTP complexes available in Protein Data Bank (PDB). Binding sites were extracted and compared exhaustively using PocketMatch, a sensitive in‐house site comparison algorithm, which resulted in grouping the entire dataset into 27 site‐types. Each of these site‐types represent a structural motif comprised of two or more residue conservations, derived using another in‐house tool for superposing binding sites, PocketAlign. The 27 site‐types could be grouped further into 9 super‐types by considering partial similarities in the sites, which indicated that the individual site‐types comprise different combinations of one or more site features. A scan across PDB using the 27 structural motifs determined the motifs to be specific to NTP binding sites, and a computational alanine mutagenesis indicated that residues identified to be highly conserved in the motifs are also most contributing to binding. Alternate orientations of the ligand in several site‐types were observed and rationalized, indicating the possibility of some residues serving as anchors for NTP recognition. The presence of multiple site‐types and the grouping of multiple folds into each site‐type is strongly suggestive of convergent evolution. Knowledge of determinants obtained from this study will be useful for detecting function in unknown proteins. Proteins 2017; 85:1699–1712.


Chemical Biology & Drug Design | 2012

Molecular Docking Studies of Novel Palmitoyl‐ligands for Cyclooxygenase‐2

Raghu Bhagavat; Asma Saqib; Chandrakant S. Karigar

An in silico approach was adopted to identify potential cyclooxygenase‐2 inhibitors through molecular docking studies. The in vivo studies indicated that synthetic palmitoyl derivatives of salicylic acid, para amino phenol, para amino benzoic acid, and anthranilic acid possessed significant pharmacological activities like anti‐inflammatory, analgesic, and antipyretic activities. None of the tested substances produced any significant gastric lesions in experimental animals. In an attempt to understand the ligand–protein interactions in terms of the binding affinity, the above synthetic molecules were subjected to docking analysis using AutoDock. The palmitoyl derivatives palmitoyl anthranilic acid, palmitoyl para amino benzoic acid, palmitoyl para amino phenol, and palmitoyl salicylic acid showed better binding energy than the known inhibitor diclofenac bound to 1PXX. All the palmitoyl derivatives made similar interactions with the binding site residues of cyclooxygenase‐2 as compared to that of the known inhibitor. Thus, structure‐based drug discovery approach was successfully employed to identify some promising pro‐drugs for the treatment of pain and inflammation.


Structure | 2018

An Augmented Pocketome: Detection and Analysis of Small-Molecule Binding Pockets in Proteins of Known 3D Structure

Raghu Bhagavat; Santhosh Sankar; Narayanaswamy Srinivasan; Nagasuma Chandra

Protein-ligand interactions form the basis of most cellular events. Identifying ligand binding pockets inxa0proteins will greatly facilitate rationalizing and predicting protein function. Ligand binding sites are unknown for many proteins of known three-dimensional (3D) structure, creating a gap in our understanding of protein structure-function relationships. To bridge this gap, we detect pockets in proteins of known 3D structures, using computational techniques. This augmented pocketome (PocketDB) consists of 249,096 pockets, which is about seven times larger than what is currently known. We deduce possible ligand associations for about 46% of the newly identified pockets. The augmented pocketome, when subjected to clustering based on similarities among pockets, yielded 2,161 site types, which are associated with 1,037 ligand types, together providing fold-site-type-ligand-type associations. The PocketDB resource facilitates a structure-based function annotation, delineation of the structural basis of ligand recognition, and provides functional clues for domains of unknown functions, allosteric proteins, and druggable pockets.


Scientific Reports | 2017

A genome-wide structure-based survey of nucleotide binding proteins in M. tuberculosis

Raghu Bhagavat; Heung Bok Kim; Chang Yub Kim; Thomas C. Terwilliger; Dolly Mehta; Narayanaswamy Srinivasan; Nagasuma Chandra

Nucleoside tri-phosphates (NTP) form an important class of small molecule ligands that participate in, and are essential to a large number of biological processes. Here, we seek to identify the NTP binding proteome (NTPome) in M. tuberculosis (M.tb), a deadly pathogen. Identifying the NTPome is useful not only for gaining functional insights of the individual proteins but also for identifying useful drug targets. From an earlier study, we had structural models of M.tb at a proteome scale from which a set of 13,858 small molecule binding pockets were identified. We use a set of NTP binding sub-structural motifs derived from a previous study and scan the M.tb pocketome, and find that 1,768 proteins or 43% of the proteome can theoretically bind NTP ligands. Using an experimental proteomics approach involving dye-ligand affinity chromatography, we confirm NTP binding to 47 different proteins, of which 4 are hypothetical proteins. Our analysis also provides the precise list of binding site residues in each case, and the probable ligand binding pose. As the list includes a number of known and potential drug targets, the identification of NTP binding can directly facilitate structure-based drug design of these targets.

Collaboration


Dive into the Raghu Bhagavat's collaboration.

Top Co-Authors

Avatar

Nagasuma Chandra

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haryadi Rajeswari

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Praveen Anand

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Saurabh Mishra

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Akilandeswari Gopalan

Indian Council of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Alamelu Raja

Indian Council of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Amandeep Singh

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Aneesh Chandran

Rajiv Gandhi Centre for Biotechnology

View shared research outputs
Researchain Logo
Decentralizing Knowledge