Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nagat Bissada is active.

Publication


Featured researches published by Nagat Bissada.


Neuron | 1999

A YAC Mouse Model for Huntington’s Disease with Full-Length Mutant Huntingtin, Cytoplasmic Toxicity, and Selective Striatal Neurodegeneration

J.Graeme Hodgson; Nadia Agopyan; Claire-Anne Gutekunst; Blair R. Leavitt; Fred LePiane; Roshni R. Singaraja; Desmond J. Smith; Nagat Bissada; Krista McCutcheon; Jamal Nasir; Laure Jamot; Xiao-Jiang Li; Mary E. Stevens; Erica Rosemond; John C. Roder; Anthony G. Phillips; Edward M. Rubin; Steven M. Hersch; Michael R. Hayden

We have produced yeast artificial chromosome (YAC) transgenic mice expressing normal (YAC18) and mutant (YAC46 and YAC72) huntingtin (htt) in a developmental and tissue-specific manner identical to that observed in Huntingtons disease (HD). YAC46 and YAC72 mice show early electrophysiological abnormalities, indicating cytoplasmic dysfunction prior to observed nuclear inclusions or neurodegeneration. By 12 months of age, YAC72 mice have a selective degeneration of medium spiny neurons in the lateral striatum associated with the translocation of N-terminal htt fragments to the nucleus. Neurodegeneration can be present in the absence of macro- or microaggregates, clearly showing that aggregates are not essential to initiation of neuronal death. These mice demonstrate that initial neuronal cytoplasmic toxicity is followed by cleavage of htt, nuclear translocation of htt N-terminal fragments, and selective neurodegeneration.


Cell | 2006

Cleavage at the Caspase-6 Site Is Required for Neuronal Dysfunction and Degeneration Due to Mutant Huntingtin

Rona K. Graham; Yu Deng; Elizabeth J. Slow; Brendan J. Haigh; Nagat Bissada; Ge Lu; Jacqueline Pearson; Jacqueline Shehadeh; Lisa Bertram; Zoe Murphy; Simon C. Warby; Crystal N. Doty; Sophie Roy; Cheryl L. Wellington; Blair R. Leavitt; Lynn A. Raymond; Donald W. Nicholson; Michael R. Hayden

Cleavage of huntingtin (htt) has been characterized in vitro, and accumulation of caspase cleavage fragments represents an early pathological change in brains of Huntingtons disease (HD) patients. However, the relationship between htt proteolysis and the pathogenesis of HD is unknown. To determine whether caspase cleavage of htt is a key event in the neuronal dysfunction and selective neurodegeneration in HD, we generated YAC mice expressing caspase-3- and caspase-6-resistant mutant htt. Mice expressing mutant htt, resistant to cleavage by caspase-6 but not caspase-3, maintain normal neuronal function and do not develop striatal neurodegeneration. Furthermore, caspase-6-resistant mutant htt mice are protected against neurotoxicity induced by multiple stressors including NMDA, quinolinic acid (QA), and staurosporine. These results are consistent with proteolysis of htt at the caspase-6 cleavage site being an important event in mediating neuronal dysfunction and neurodegeneration and highlight the significant role of htt proteolysis and excitotoxicity in HD.


Laboratory Investigation | 2002

ABCA1 mRNA and Protein Distribution Patterns Predict Multiple Different Roles and Levels of Regulation

Cheryl L. Wellington; Elizabeth K.-Y. Walker; Agripina Suarez; Anita Kwok; Nagat Bissada; Roshni R. Singaraja; Yu-Zhou Yang; Lin-Hua Zhang; Erick R. James; Janet E. Wilson; Omar Francone; Bruce M. McManus; Michael R. Hayden

Mutations in ABCA1 cause the allelic disorders familial hypolipoproteinemia and Tangier Disease. To identify where ABCA1 was likely to have a functional role, we determined the cellular and tissue-specific patterns of murine ABCA1 expression. RT-PCR and Western blot analysis on dissected murine tissues demonstrated broad expression of ABCA1 mRNA and protein in many tissues with prominent protein expression in liver, testis, and adrenal tissue. In situ hybridization and immunohistochemistry experiments demonstrated specific patterns of ABCA1 expression at the cellular level, with hepatocytes, the epithelial lining of the digestive system and bladder, the proximal convoluted tubule of the kidney, and Purkinje and cortical pyramidal neurons containing abundant ABCA1 protein. Significant discordance between relative mRNA and protein expression patterns suggests the possibility of post-transcriptional regulation of ABCA1 expression in selected cells or tissues. We also show that ABCA1 protein levels are up-regulated specifically in the liver after exposure to an atherogenic diet for 7 days, supporting a major role for the liver in dietary modulation of HDL-C levels. Our observations show that ABCA1 is expressed in a pattern consistent with its role in HDL-C metabolism. Additionally, ABCA1 may have important functional roles in other cell types independent of HDL-C regulation.


Journal of Clinical Investigation | 2002

Increased ABCA1 activity protects against atherosclerosis.

Roshni R. Singaraja; Catherine Fievet; Graciela Castro; Erick R. James; Nathalie Hennuyer; Susanne M. Clee; Nagat Bissada; Jonathan Choy; Jean-Charles Fruchart; Bruce M. McManus; Bart Staels; Michael R. Hayden

The ABC transporter ABCA1 plays a key role in the first steps of the reverse cholesterol transport pathway by mediating lipid efflux from macrophages. Previously, it was demonstrated that human ABCA1 overexpression in vivo in transgenic mice results in a mild elevation of plasma HDL levels and increased efflux of cholesterol from macrophages. In this study, we determined the effect of overexpression of ABCA1 on atherosclerosis development. Human ABCA1 transgenic mice (BAC(+)) were crossed with ApoE(-/-) mice, a strain that spontaneously develop atherosclerotic lesions. BAC(+)ApoE(-/-) mice developed dramatically smaller, less-complex lesions as compared with their ApoE(-/-) counterparts. In addition, there was increased efflux of cholesterol from macrophages isolated from the BAC(+)ApoE(-/-) mice. Although the increase in plasma HDL cholesterol levels was small, HDL particles from BAC(+)ApoE(-/-) mice were significantly better acceptors of cholesterol. Lipid analysis of HDL particles from BAC(+)ApoE(-/-) mice revealed an increase in phospholipid levels, which was correlated significantly with their ability to enhance cholesterol efflux.


The Journal of Neuroscience | 2009

Specific Loss of Brain ABCA1 Increases Brain Cholesterol Uptake and Influences Neuronal Structure and Function

Joanna M. Karasinska; Franz Rinninger; Dieter Lütjohann; Piers Ruddle; Sonia Franciosi; Janine K. Kruit; Roshni R. Singaraja; Veronica Hirsch-Reinshagen; Jianjia Fan; Liam R. Brunham; Nagat Bissada; Rajasekhar Ramakrishnan; Cheryl L. Wellington; John S. Parks; Michael R. Hayden

The expression of the cholesterol transporter ATP-binding cassette transporter A1 (ABCA1) in the brain and its role in the lipidation of apolipoproteins indicate that ABCA1 may play a critical role in brain cholesterol metabolism. To investigate the role of ABCA1 in brain cholesterol homeostasis and trafficking, we characterized mice that specifically lacked ABCA1 in the CNS, generated using the Cre/loxP recombination system. These mice showed reduced plasma high-density lipoprotein (HDL) cholesterol levels associated with decreased brain cholesterol content and enhanced brain uptake of esterified cholesterol from plasma HDL. Increased levels of HDL receptor SR-BI in brain capillaries and apolipoprotein A-I in brain and CSF of mutant mice were evident. Cholesterol homeostasis changes were mirrored by disturbances in motor activity and sensorimotor function. Changes in synaptic ultrastructure including reduced synapse and synaptic vesicle numbers were observed. These data show that ABCA1 is a key regulator of brain cholesterol metabolism and that disturbances in cholesterol transport in the CNS are associated with structural and functional deficits in neurons. Moreover, our findings also demonstrate that specific changes in brain cholesterol metabolism can lead to alterations in cholesterol uptake from plasma to brain.


The Journal of Neuroscience | 2010

Cleavage at the 586 Amino Acid Caspase-6 Site in Mutant huntingtin Influences Caspase-6 Activation In Vivo

Rona K. Graham; Yu Deng; Jeffery Carroll; Kuljeet Vaid; Catherine M. Cowan; Mahmoud A. Pouladi; Martina Metzler; Nagat Bissada; Lili Wang; Richard L.M. Faull; Michelle Gray; X. William Yang; Lynn A. Raymond; Michael R. Hayden

Caspase cleavage of huntingtin (htt) and nuclear htt accumulation represent early neuropathological changes in brains of patients with Huntingtons disease (HD). However, the relationship between caspase cleavage of htt and caspase activation patterns in the pathogenesis of HD remains poorly understood. The lack of a phenotype in YAC mice expressing caspase-6-resistant (C6R) mutant htt (mhtt) highlights proteolysis of htt at the 586 aa caspase-6 (casp6) site as a key mechanism in the pathology of HD. The goal of this study was to investigate how proteolysis of htt at residue 586 plays a role in the pathogenesis of HD and determine whether inhibiting casp6 cleavage of mhtt alters cell-death pathways in vivo. Here we demonstrate that activation of casp6, and not caspase-3, is observed before onset of motor abnormalities in human and murine HD brain. Active casp6 levels correlate directly with CAG size and inversely with age of onset. In contrast, in vivo expression of C6R mhtt attenuates caspase activation. Increased casp6 activity and apoptotic cell death is evident in primary striatal neurons expressing caspase-cleavable, but not C6R, mhtt after NMDA application. Pretreatment with a casp6 inhibitor rescues the apoptotic cell death observed in this paradigm. These data demonstrate that activation of casp6 is an early marker of disease in HD. Furthermore, these data provide a clear link between excitotoxic pathways and proteolysis and suggest that C6R mhtt protects against neurodegeneration by influencing the activation of neuronal cell-death and excitotoxic pathways operative in HD.


Circulation | 2006

Both Hepatic and Extrahepatic ABCA1 Have Discrete and Essential Functions in the Maintenance of Plasma High-Density Lipoprotein Cholesterol Levels In Vivo

Roshni R. Singaraja; Miranda Van Eck; Nagat Bissada; Francesca Zimetti; Heidi L. Collins; Reeni B. Hildebrand; Anna R. Hayden; Liam R. Brunham; Martin H. Kang; Jean-Charles Fruchart; Theo J.C. van Berkel; John S. Parks; Bart Staels; George H. Rothblat; Catherine Fievet; Michael R. Hayden

Background— Extrahepatic tissues have long been considered critical contributors of cholesterol to nascent HDL particles in the reverse cholesterol transport pathway, in which ABCA1 plays the crucial role. Recent studies, however, including both overexpression and deletion of ABCA1 selectively in the liver, have highlighted the primary role of the liver in the maintenance of HDL levels in vivo. Methods and Results— The availability of mice with complete deletion of ABCA1 (total knockout [TKO]) and with liver-specific deletion of ABCA1 (LSKO) has enabled us to dissect the discrete roles of hepatic relative to extrahepatic ABCA1 in HDL biogenesis. Delivery of adenoviral ABCA1 resulted in selective expression of physiological levels of ABCA1 in the livers of both LSKO and TKO mice, resulting in increased HDL cholesterol (HDL-C). Expression of ABCA1 in the liver of LSKO mice resulted in plasma HDL-C levels that were similar to those in wild-type mice and significantly above those seen in similarly treated TKO mice. HDL particles from ABCA1-expressing LSKO mice were larger and contained significantly increased cholesterol compared with TKO mice. Infusion of human apolipoprotein A-I/phospholipid reconstituted HDL particles normalized plasma HDL-C levels in LSKO mice but had no effect on HDL-C levels in TKO mice. Conclusions— Although hepatic ABCA1 appears crucial for phospholipid transport, extrahepatic tissues play an important role in cholesterol transfer to nascent HDL particles. These data highlight the discrete and specific roles of both liver and extrahepatic ABCA1 in HDL biogenesis in vivo and indicate that ABCA1 shows lipid cargo selectivity depending on its site of expression.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2009

Tissue-specific roles of ABCA1 influence susceptibility to atherosclerosis.

Liam R. Brunham; Roshni R. Singaraja; MyNgan Duong; Jenelle M. Timmins; Catherine Fievet; Nagat Bissada; Martin H. Kang; Amrit Samra; Jean Charles Fruchart; Bruce M. McManus; Bart Staels; John S. Parks; Michael R. Hayden

Objective—The ATP-binding cassette transporter, subfamily A, member 1 (ABCA1) plays a key role in HDL cholesterol metabolism. However, the role of ABCA1 in modulating susceptibility to atherosclerosis is controversial. Methods and Results—We investigated the role of ABCA1 in atherosclerosis using a combination of overexpression and selective deletion models. First, we examined the effect of transgenic overexpression of a full-length human ABCA1-containing bacterial artificial chromosome (BAC) in the presence or absence of the endogenous mouse Abca1 gene. ABCA1 overexpression in the atherosclerosis-susceptible Ldlr−/− background significantly reduced the development of atherosclerosis in both the presence and absence of mouse Abca1. Next, we used mice with tissue-specific inactivation of Abca1 to dissect the discrete roles of Abca1 in different tissues on susceptibility to atherosclerosis. On the Apoe−/− background, mice lacking hepatic Abca1 had significantly reduced HDL cholesterol and accelerated atherosclerosis, indicating that the liver is an important site at which Abca1 plays an antiatherogenic role. In contrast, mice with macrophage-specific inactivation of Abca1 on the Ldlr−/− background displayed no change in atherosclerotic lesion area. Conclusions—These data indicate that physiological expression of Abca1 modulates the susceptibility to atherosclerosis and establish hepatic Abca1 expression as an important site of atheroprotection. In contrast, we show that selective deletion of macrophage Abca1 does not significantly modulate atherogenesis.


Neurobiology of Disease | 2006

Levels of mutant huntingtin influence the phenotypic severity of Huntington disease in YAC128 mouse models

Rona K. Graham; Elizabeth J. Slow; Yu Deng; Nagat Bissada; Ge Lu; Jacqueline Pearson; Jacqueline Shehadeh; Blair R. Leavitt; Lynn A. Raymond; Michael R. Hayden

Huntington disease (HD) is a devastating neuropsychiatric disease caused by expansion of a trinucleotide repeat (CAG) in the HD gene. Neuropathological changes include the appearance of N-terminal huntingtin fragments, decreased brain weight and apoptotic neuronal loss in a select subset of neurons located in the striatum. There is still controversy over whether homozygosity for the mutation in HD is associated with a more severe phenotype. In humans, resolution of this issue has been complicated by the small number of homozygous patients and difficulty in the definition of reliable phenotypic endpoints. In order to definitively determine whether there is a correlation between phenotypic severity and expression levels of mutant huntingtin, we undertook a behavioral and neuropathological assessment of YAC128 mice with varying levels of mutant huntingtin. The results reveal a clear relationship between levels of mutant huntingtin and phenotype defined by earlier age of onset, more rapid progression, enhanced striatal volume loss, acceleration of nuclear huntingtin fragment accumulation and increased sensitivity to NMDAR-mediated excitotoxicity. These results provide clear evidence in vivo supporting a more severe phenotype associated with increased levels of mutant huntingtin as seen in homozygotes for HD.


Human Molecular Genetics | 2011

Altered palmitoylation and neuropathological deficits in mice lacking HIP14

Roshni R. Singaraja; Kun Huang; Shaun S. Sanders; Austen J. Milnerwood; Rochelle M. Hines; Jason P. Lerch; Sonia Franciosi; Renaldo C. Drisdel; Kuljeet Vaid; Fiona B. Young; Crystal N. Doty; Junmei Wan; Nagat Bissada; R. Mark Henkelman; William N. Green; Nicholas G. Davis; Lynn A. Raymond; Michael R. Hayden

Huntingtin interacting protein 14 (HIP14, ZDHHC17) is a huntingtin (HTT) interacting protein with palmitoyl transferase activity. In order to interrogate the function of Hip14, we generated mice with disruption in their Hip14 gene. Hip14-/- mice displayed behavioral, biochemical and neuropathological defects that are reminiscent of Huntington disease (HD). Palmitoylation of other HIP14 substrates, but not Htt, was reduced in the Hip14-/- mice. Hip14 is dysfunctional in the presence of mutant htt in the YAC128 mouse model of HD, suggesting that altered palmitoylation mediated by HIP14 may contribute to HD.

Collaboration


Dive into the Nagat Bissada's collaboration.

Top Co-Authors

Avatar

Michael R. Hayden

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Blair R. Leavitt

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Rona K. Graham

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Yu Deng

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sonia Franciosi

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce M. McManus

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge