Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nai-Yang Deng is active.

Publication


Featured researches published by Nai-Yang Deng.


IEEE Transactions on Neural Networks | 2011

Improvements on Twin Support Vector Machines

Yuan-Hai Shao; Chunhua Zhang; Xiao-Bo Wang; Nai-Yang Deng

For classification problems, the generalized eigenvalue proximal support vector machine (GEPSVM) and twin support vector machine (TWSVM) are regarded as milestones in the development of the powerful SVMs, as they use the nonparallel hyperplane classifiers. In this brief, we propose an improved version, named twin bounded support vector machines (TBSVM), based on TWSVM. The significant advantage of our TBSVM over TWSVM is that the structural risk minimization principle is implemented by introducing the regularization term. This embodies the marrow of statistical learning theory, so this modification can improve the performance of classification. In addition, the successive overrelaxation technique is used to solve the optimization problems to speed up the training procedure. Experimental results show the effectiveness of our method in both computation time and classification accuracy, and therefore confirm the above conclusion further.


PeerJ | 2013

iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins

Yan Xu; Xiao-Jian Shao; Ling-Yun Wu; Nai-Yang Deng; Kuo-Chen Chou

As one of the most important and universal posttranslational modifications (PTMs) of proteins, S-nitrosylation (SNO) plays crucial roles in a variety of biological processes, including the regulation of cellular dynamics and many signaling events. Knowledge of SNO sites in proteins is very useful for drug development and basic research as well. Unfortunately, it is both time-consuming and costly to determine the SNO sites purely based on biological experiments. Facing the explosive protein sequence data generated in the post-genomic era, we are challenged to develop automated vehicles for timely and effectively determining the SNO sites for uncharacterized proteins. To address the challenge, a new predictor called iSNO-AAPair was developed by taking into account the coupling effects for all the pairs formed by the nearest residues and the pairs by the next nearest residues along protein chains. The cross-validation results on a state-of-the-art benchmark have shown that the new predictor outperformed the existing predictors. The same was true when tested by the independent proteins whose experimental SNO sites were known. A user-friendly web-server for iSNO-AAPair was established at http://app.aporc.org/iSNO-AAPair/, by which users can easily obtain their desired results without the need to follow the mathematical equations involved during its development.


PLOS ONE | 2014

iNitro-Tyr: Prediction of Nitrotyrosine Sites in Proteins with General Pseudo Amino Acid Composition

Yan Xu; Xin Wen; Li-Shu Wen; Ling-Yun Wu; Nai-Yang Deng; Kuo-Chen Chou

Nitrotyrosine is one of the post-translational modifications (PTMs) in proteins that occurs when their tyrosine residue is nitrated. Compared with healthy people, a remarkably increased level of nitrotyrosine is detected in those suffering from rheumatoid arthritis, septic shock, and coeliac disease. Given an uncharacterized protein sequence that contains many tyrosine residues, which one of them can be nitrated and which one cannot? This is a challenging problem, not only directly related to in-depth understanding the PTM’s mechanism but also to the nitrotyrosine-based drug development. Particularly, with the avalanche of protein sequences generated in the postgenomic age, it is highly desired to develop a high throughput tool in this regard. Here, a new predictor called “iNitro-Tyr” was developed by incorporating the position-specific dipeptide propensity into the general pseudo amino acid composition for discriminating the nitrotyrosine sites from non-nitrotyrosine sites in proteins. It was demonstrated via the rigorous jackknife tests that the new predictor not only can yield higher success rate but also is much more stable and less noisy. A web-server for iNitro-Tyr is accessible to the public at http://app.aporc.org/iNitro-Tyr/. For the convenience of most experimental scientists, we have further provided a protocol of step-by-step guide, by which users can easily get their desired results without the need to follow the complicated mathematics that were presented in this paper just for the integrity of its development process. It has not escaped our notice that the approach presented here can be also used to deal with the other PTM sites in proteins.


International Journal of Molecular Sciences | 2014

iHyd-PseAAC: Predicting Hydroxyproline and Hydroxylysine in Proteins by Incorporating Dipeptide Position-Specific Propensity into Pseudo Amino Acid Composition

Yan Xu; Xin Wen; Xiao-Jian Shao; Nai-Yang Deng; Kuo-Chen Chou

Post-translational modifications (PTMs) play crucial roles in various cell functions and biological processes. Protein hydroxylation is one type of PTM that usually occurs at the sites of proline and lysine. Given an uncharacterized protein sequence, which site of its Pro (or Lys) can be hydroxylated and which site cannot? This is a challenging problem, not only for in-depth understanding of the hydroxylation mechanism, but also for drug development, because protein hydroxylation is closely relevant to major diseases, such as stomach and lung cancers. With the avalanche of protein sequences generated in the post-genomic age, it is highly desired to develop computational methods to address this problem. In view of this, a new predictor called “iHyd-PseAAC” (identify hydroxylation by pseudo amino acid composition) was proposed by incorporating the dipeptide position-specific propensity into the general form of pseudo amino acid composition. It was demonstrated by rigorous cross-validation tests on stringent benchmark datasets that the new predictor is quite promising and may become a useful high throughput tool in this area. A user-friendly web-server for iHyd-PseAAC is accessible at http://app.aporc.org/iHyd-PseAAC/. Furthermore, for the convenience of the majority of experimental scientists, a step-by-step guide on how to use the web-server is given. Users can easily obtain their desired results by following these steps without the need of understanding the complicated mathematical equations presented in this paper just for its integrity.


Protein Engineering Design & Selection | 2009

Prediction of palmitoylation sites using the composition of k-spaced amino acid pairs

Xiao-Bo Wang; Ling-Yun Wu; Yongcui Wang; Nai-Yang Deng

Palmitoylation is an important hydrophobic protein modification activity that participates many cellular processes, including signaling, neuronal transmission, membrane trafficking and so on. So it is an important problem to identify palmitoylated proteins and the corresponding sites. Comparing with the expensive and time-consuming biochemical experiments, the computational methods have attracted much attention due to their good performances in predicting palmitoylation sites. In this paper, we develop a novel automated computational method to perform this work. For a sequence segment in a given protein, the encoding scheme based on the composition of k-spaced amino acid pairs (CKSAAP) is introduced, and then the support vector machine is used as the predictor. The proposed prediction model CKSAAP-Palm outperforms the existing method CSS-Palm2.0 on both cross-validation experiments and some independent testing data sets. These results imply that our CKSAAP-Palm is able to predict more potential palmitoylation sites and increases research productivity in palmitoylation sites discovery. The corresponding software can be freely downloaded from http://www.aporc.org/doc/wiki/CKSAAP-Palm.


Journal of Theoretical Biology | 2009

Predicting DNA- and RNA-binding proteins from sequences with kernel methods

Xiaojian Shao; Yingjie Tian; Ling-Yun Wu; Yong Wang; Ling Jing; Nai-Yang Deng

In this paper, support vector machines (SVMs) are applied to predict the nucleic-acid-binding proteins. We constructed two classifiers to differentiate DNA/RNA-binding proteins from non-nucleic-acid-binding proteins by using a conjoint triad feature which extract information directly from amino acids sequence of protein. Both self-consistency and jackknife tests show promising results on the protein datasets in which the sequences identity is less than 25%. In the self-consistency test, the predictive accuracy is 90.37% for DNA-binding proteins and 89.70% for RNA-binding proteins. In the jackknife test, the predictive accuracies are 78.93% and 76.75%, respectively. Comparison results show that our method is very competitive by outperforming other previously published sequence-based prediction methods.


Neural Computing and Applications | 2013

An ε-twin support vector machine for regression

Yuan-Hai Shao; Chunhua Zhang; Zhi-Min Yang; Ling Jing; Nai-Yang Deng

This study proposes a new regressor—ε-twin support vector regression (ε-TSVR) based on TSVR. ε-TSVR determines a pair of ε-insensitive proximal functions by solving two related SVM-type problems. Different form only empirical risk minimization is implemented in TSVR, the structural risk minimization principle is implemented by introducing the regularization term in primal problems of our ε-TSVR, yielding the dual problems to be stable positive definite quadratic programming problems, so can improve the performance of regression. In addition, the successive overrelaxation technique is used to solve the optimization problems to speed up the training procedure. Experimental results for both artificial and real datasets show that, compared with the popular ε-SVR, LS-SVR and TSVR, our ε-TSVR has remarkable improvement of generalization performance with short training time.


Protein and Peptide Letters | 2010

Prediction of enzyme subfamily class via pseudo amino acid composition by incorporating the conjoint triad feature.

Yong-Cui Wang; Xiao-Bo Wang; Zhi-Xia Yang; Nai-Yang Deng

Predicting enzyme subfamily class is an imbalance multi-class classification problem due to the fact that the number of proteins in each subfamily makes a great difference. In this paper, we focus on developing the computational methods specially designed for the imbalance multi-class classification problem to predict enzyme subfamily class. We compare two support vector machine (SVM)-based methods for the imbalance problem, AdaBoost algorithm with RBFSVM (SVM with RBF kernel) and SVM with arithmetic mean (AM) offset (AM-SVM) in enzyme subfamily classification. As input features for our predictive model, we use the conjoint triad feature (CTF). We validate two methods on an enzyme benchmark dataset, which contains six enzyme main families with a total of thirty-four subfamily classes, and those proteins have less than 40% sequence identity to any other in a same functional class. In predicting oxidoreductases subfamilies, AM-SVM obtains the over 0.92 Matthews correlation coefficient (MCC) and over 93% accuracy, and in predicting lyases, isomerases and ligases subfamilies, it obtains over 0.73 MCC and over 82% accuracy. The improvement in the predictive performance suggests the AM-SVM might play a complementary role to the existing function annotation methods.


Journal of Theoretical Biology | 2010

Lysine acetylation sites prediction using an ensemble of support vector machine classifiers

Yan Xu; Xiao-Bo Wang; Jun Ding; Ling-Yun Wu; Nai-Yang Deng

Lysine acetylation is an essentially reversible and high regulated post-translational modification which regulates diverse protein properties. Experimental identification of acetylation sites is laborious and expensive. Hence, there is significant interest in the development of computational methods for reliable prediction of acetylation sites from amino acid sequences. In this paper we use an ensemble of support vector machine classifiers to perform this work. The experimentally determined acetylation lysine sites are extracted from Swiss-Prot database and scientific literatures. Experiment results show that an ensemble of support vector machine classifiers outperforms single support vector machine classifier and other computational methods such as PAIL and LysAcet on the problem of predicting acetylation lysine sites. The resulting method has been implemented in EnsemblePail, a web server for lysine acetylation sites prediction available at http://www.aporc.org/EnsemblePail/.


Computational Biology and Chemistry | 2011

Research Article: Kernel-based data fusion improves the drug-protein interaction prediction

Yong-Cui Wang; Chun-Hua Zhang; Nai-Yang Deng; Yong Wang

Proteins are involved in almost every action of every organism by interacting with other small molecules including drugs. Computationally predicting the drug-protein interactions is particularly important in speeding up the process of developing novel drugs. To borrow the information from existing drug-protein interactions, we need to define the similarity among proteins and the similarity among drugs. Usually these similarities are defined based on one single data source and many methods have been proposed. However, the availability of many genomic and chemogenomic data sources allows us to integrate these useful data sources to improve the predictions. Thus a great challenge is how to integrate these heterogeneous data sources. Here, we propose a kernel-based method to predict drug-protein interactions by integrating multiple types of data. Specially, we collect drug pharmacological and therapeutic effects, drug chemical structures, and protein genomic information to characterize the drug-target interactions, then integrate them by a kernel function within a support vector machine (SVM)-based predictor. With this data fusion technology, we establish the drug-protein interactions from a collections of data sources. Our new method is validated on four classes of drug target proteins, including enzymes, ion channels (ICs), G-protein couple receptors (GPCRs), and nuclear receptors (NRs). We find that every single data source is predictive and integration of different data sources allows the improvement of accuracy, i.e., data integration can uncover more experimentally observed drug-target interactions upon the same levels of false positive rate than single data source based methods. The functional annotation analysis indicates that our new predictions are worthy of future experimental validation. In conclusion, our new method can efficiently integrate diverse data sources, and will promote the further research in drug discovery.

Collaboration


Dive into the Nai-Yang Deng's collaboration.

Top Co-Authors

Avatar

Yuan-Hai Shao

Zhejiang University of Technology

View shared research outputs
Top Co-Authors

Avatar

Yong-Cui Wang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ling-Yun Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhen Wang

Inner Mongolia University

View shared research outputs
Top Co-Authors

Avatar

Junyan Tan

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yan Xu

University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yingjie Tian

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yong Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chun-Na Li

Zhejiang University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ling Zhen

China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge