Naiara Ortuzar
University of the Basque Country
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Naiara Ortuzar.
Neural Plasticity | 2012
Harkaitz Bengoetxea; Naiara Ortuzar; Susana Bulnes; Irantzu Rico-Barrio; José Vicente Lafuente; Enrike G. Argandoña
During postnatal development, sensory experience modulates cortical development, inducing numerous changes in all of the components of the cortex. Most of the cortical changes thus induced occur during the critical period, when the functional and structural properties of cortical neurons are particularly susceptible to alterations. Although the time course for experience-mediated sensory development is specific for each system, postnatal development acts as a whole, and if one cortical area is deprived of its normal sensory inputs during early stages, it will be reorganized by the nondeprived senses in a process of cross-modal plasticity that not only increases performance in the remaining senses when one is deprived, but also rewires the brain allowing the deprived cortex to process inputs from other senses and cortices, maintaining the modular configuration. This paper summarizes our current understanding of sensory systems development, focused specially in the visual system. It delineates sensory enhancement and sensory deprivation effects at both physiological and anatomical levels and describes the use of enriched environment as a tool to rewire loss of brain areas to enhance other active senses. Finally, strategies to apply restorative features in human-deprived senses are studied, discussing the beneficial and detrimental effects of cross-modal plasticity in prostheses and sensory substitution devices implantation.
International Review of Neurobiology | 2012
José Vicente Lafuente; Naiara Ortuzar; Harkaitz Bengoetxea; Susana Bulnes; Enrike G. Argandoña
Angioneurines are a family of molecules that include vascular growth factors such as VEGF, neurotrophins such as BDNF, IGF-I, and Erythropoietin, among others. They affect both neural and vascular processes. Due to the fact that all of them act over glia, we propose the term angioglioneurins to name them. They play a key role in the neurogliovascular unit that represents the functional core maintaining BBB. Although delivery to CNS is still an unsolved problem nowadays, exogenous angioglioneurin administration represents a promising therapeutic strategy for many neurological pathologies due to their neurotrophic and neurogenic role. In brains, VEGF is produced by neurons and astrocytes in different stages and situation, binding to tyrosine kinase receptors and also to neuropilin family. This fact reinforces its key role in the cross talk between neural and vascular development and activity. Angioglioneurins described in this report might become an important therapeutic resource in CNS restoration, especially in pathologies as stroke or traumatic brain injury.
Journal of Neural Transmission | 2011
Naiara Ortuzar; Enrike G. Argandoña; Harkaitz Bengoetxea; José Vicente Lafuente
Postnatal development of the visual cortex is modulated by experience, especially during the critical period. In rats, a stable neuronal population is only acquired after this relatively prolonged period. Vascular endothelial growth factor (VEGF) is the most important angiogenic factor and also has strong neuroprotective, neurotrophic and neurogenic properties. Similar effects have been described for rearing in enriched environments. Our aim is to investigate the vascular and neuronal effects of combining VEGF infusion and environmental enrichment on the visual cortex during the initial days of the critical period. Results showed that a small percentage of Cleaved Caspase-3 positive cells colocalized with neuronal markers. The lesion produced by the cannula implantation resulted in decreased vascular, neuronal and Caspase-3 positive cell densities. Rearing under enriched environment was unable to reverse these effects in any group, whereas VEGF infusion alone partially corrected those effects. A higher effectiveness was reached by combining both the procedures, the most effective combination being when enriched-environment rearing was introduced only after minipump implantation. In addition to the angiogenic effect of VEGF, applied strategies also had synergic neuroprotective effects, and the combination of the two strategies had more remarkable effects than those achieved by each strategy applied individually.
Behavioural Brain Research | 2013
Naiara Ortuzar; Irantzu Rico-Barrio; Harkaitz Bengoetxea; Enrike G. Argandoña; José Vicente Lafuente
The role of VEGF in the nervous system is extensive; apart from its angiogenic effect, VEGF has been described as a neuroprotective, neurotrophic and neurogenic molecule. Similar effects have been described for enriched environment (EE). Moreover, both VEGF and EE have been related to improved spatial memory. Our aim was to investigate the neurovascular and cognitive effects of intracerebrally-administered VEGF and enriched environment during the critical period of the rat visual cortex development. Results showed that VEGF infusion as well as enriched environment induced neurovascular and cognitive effects in developing rats. VEGF administration produced an enhancement during the learning process of enriched animals and acted as an angiogenic factor both in primary visual cortex (V1) and dentate gyrus (DG) in order to counteract minipump implantation-induced damage. This fact revealed that DG vascularization is critical for normal learning. In contrast to this enriched environment acted on the neuronal density of the DG and V1 cortex, and results showed learning enhancement only in non-operated rats. In conclusion, VEGF administration only has effects if damage is observed due to injury. Once control values were reached, no further effects appeared, showing a ceiling effect. Our results strongly support that in addition to neurogenesis, vascularization plays a pivotal role for learning and memory.
Current Neurovascular Research | 2012
Enrike G. Argandoña; Harkaitz Bengoetxea; Naiara Ortuzar; Susana Bulnes; Irantzu Rico-Barrio; José Vicente Lafuente
Brain postnatal development is modulated by adaptation and experience. Experience-mediated changes increase neuronal activity leading to increased metabolic demands that involve adaptive changes including ones at the microvascular network. Therefore, vascular environment plays a key role in central nervous system (CNS) development and function in health and disease. Trophic factors are crucial in CNS development and cell survival in adults. They participate in protection and proliferation of neuronal, glial and endothelial cells. Among the most important molecules are: the proangiogenic vascular endothelial growth factor (VEGF), the neurotrophin brain derived neurotrophic factor (BDNF), insulin growth factor (IGF-I) and the glycoprotein erythropoietin (EPO). We propose the term angioglioneurins to define molecules acting on the three components of the neurogliovascular unit. We have previously reported the effects of environmental modifications on the three components of the neurogliovascular unit during the postnatal development. We have also described the main role played by VEGF in the experience-induced postnatal changes. Angioglioneurin administration, alone or in combination with other neuroprotective strategies such as environmental enrichment, has been proposed as a non-invasive therapeutic strategy against several CNS diseases.
Acta neurochirurgica | 2010
Susana Bulnes; Enrike G. Argandoña; Harkaitz Bengoetxea; O. Leis; Naiara Ortuzar; José Vicente Lafuente
Brain edema in gliomas is an epiphenomenon related to blood-brain-barrier (BBB) breakdown in which endothelial nitric oxide synthase (eNOS) plays a key role. When induced by vascular endothelial growth factor (VEGF), eNOS synthesizes nitric oxide that increases vascular permeability. We investigated the relationship between eNOS, VEGF and BBB dysfunction in experimental gliomas.Tumors were produced in Sprague-Dawley rats by transplacentary administration of Ethylnitrosourea (ENU). Immunoexpression of eNOS and VEGF(165) was studied to identify locations of vascular permeability. BBB permeability was evaluated using gadolinium and intravital dyes and BBB integrity by endothelial barrier antigen (EBA), glucose transporter-1 (GluT-1) and occludin immunostaining. Low grade gliomas displayed constitutive eNOS expression in endothelial cells and in VEGF-positive astrocytes surrounding vessels. Malignant gliomas overexpressed eNOS in aberrant vessels and displayed numerous adjacent reactive astrocytes positive for VEGF. Huge dilated vessels inside tumors and glomeruloid vessels on the periphery of the tumor showed strong immunopositivity for eNOS and a lack of occludin and EBA staining in several vascular sections. BBB dysfunction on these aberrant vessels caused increased permeability as shown by Gadolinium contrast enhancement and intravital dye extravasation.These findings support the central role of eNOS in intra- and peritumoral edema in ENU-induced gliomas.
Journal of Signal Transduction | 2012
Susana Bulnes; Harkaitz Bengoetxea; Naiara Ortuzar; Enrike G. Argandoña; A García-Blanco; Irantzu Rico-Barrio; José Vicente Lafuente
The angiogenesis process is a key event for glioma survival, malignancy and growth. The start of angiogenesis is mediated by a cascade of intratumoural events: alteration of the microvasculature network; a hypoxic microenvironment; adaptation of neoplastic cells and synthesis of pro-angiogenic factors. Due to a chaotic blood flow, a consequence of an aberrant microvasculature, tissue hypoxia phenomena are induced. Hypoxia inducible factor 1 is a major regulator in glioma invasiveness and angiogenesis. Clones of neoplastic cells with stem cell characteristics are selected by HIF-1. These cells, called “glioma stem cells” induce the synthesis of vascular endothelial growth factor. This factor is a pivotal mediator of angiogenesis. To elucidate the role of these angiogenic mediators during glioma growth, we have used a rat endogenous glioma model. Gliomas induced by prenatal ENU administration allowed us to study angiogenic events from early to advanced tumour stages. Events such as microvascular aberrations, hypoxia, GSC selection and VEGF synthesis may be studied in depth. Our data showed that for the treatment of gliomas, developing anti-angiogenic therapies could be aimed at GSCs, HIF-1 or VEGF. The ENU-glioma model can be considered to be a useful option to check novel designs of these treatment strategies.
Brain Research | 2012
Enrike G. Argandoña; Harkaitz Bengoetxea; Susana Bulnes; Irantzu Rico-Barrio; Naiara Ortuzar; José Vicente Lafuente
VEGF is the major angiogenic and vascular permeability factor in health and disease. Vascular development depends on function, and in sensory areas is experience-dependent. Our aim was to investigate, qualitatively and quantitatively, the effects of intracortical infusion and neutralisation of VEGF during the first days of the critical visual period, when peak levels of endogenous VEGF secretion are reached. VEGF was intracortically delivered into middle cortical layers of P18 Long-Evans rats. Another cohort received anti-VEGF. Vehicle (PBS)-infused and non-operated animals were used as controls. Various immunopathological analyses were performed: Endothelial Barrier Antigen (EBA) for the BBB integrity and GFAP for astroglial response. Vascular density was measured by Butyryl Cholinesterase Histochemistry, neuronal density by NeuN immunohistochemistry and apoptosis by TUNEL staining. VEGF levels were measured by Western Blot. Decreased vascular permeability was evoked in VEGF-infused rats whilst EBA expression remained constant, suggesting a preserved BBB function. When VEGF was blocked, tissue showed a higher degree of extravasation and a decreased number of EBA-positive vessels surrounding the injury. Lesion induced by cannula implantation annulled the normal increase in vascular density and the decrease in neuronal density during this time. VEGF rescued in part the vascular increase, and also prevented physiological and pathological neuronal death. VEGF blockade induced a higher amount of neural loss and lower astrocytic reaction. Our results support the role of VEGF as extending beyond vascularization, preventing physiological and pathological neuronal death, not only in the injured hemisphere but also in the intact one suggesting a process of transhemispheric diaschisis.
Acta neurochirurgica | 2010
Naiara Ortuzar; Enrike G. Argandoña; Harkaitz Bengoetxea; O. Leis; Susana Bulnes; José Vicente Lafuente
We investigated the effects of exogenous Vascular Endothelial Growth Factor VEGF combined with an enriched environment on BBB integrity after a minimal trauma induced during the first days of the critical visual period in rats, when peak levels of endogenous VEGF secretion are reached. VEGF was administered using osmotic mini-pumps placed in middle cortical layers of P18 Long-Evansrats. Tissue changes were evaluated using conventional histology. BBB integrity was shown by immunohistochemistry techniques for EBA and GluT-1. Mini-pump implantation produced a wider cavity in anti-VEGF infused rats. In VEGF-infused rats there was a damaged region around the cannula that was smaller in rats raised in an enriched environment (EE). The administration of VEGF induced a high concentration of plasma proteins in the neuropil around the point of cannula placement and a high inflammatory reaction. VEGF-infused rats raised in an EE showed a lower degree of extravasation and better tissue preservation. Anti-VEGF administration produced a lower protein expression profile and more widespread deterioration of tissue. Double immunofluorescence for EBA and GluT-1 showed that the administration of VEGF preserves the tissue, which remains present but not fully functional. In contrast, a combination of VEGF administration and an EE partially protects the functionally damaged tissue with a higher preservation of BBB integrity.
Frontiers in Cellular Neuroscience | 2013
Harkaitz Bengoetxea; Naiara Ortuzar; Irantzu Rico-Barrio; José Vicente Lafuente; Enrike G. Argandoña
Elimination of sensory inputs (deprivation) modifies the properties of the sensory cortex and serves as a model for studying plasticity during postnatal development. Many studies on the effects of deprivation have been performed in the visual cortex using dark-rearing as a visual deprivation model. It induces changes in all cellular and molecular components, including astrocytes, which play an important role in the development, maintenance, and plasticity of the cortex, mediated by cytokines which have been termed angioglioneurins. When one sense is deprived, a compensatory mechanism called cross-modal plasticity increases performance in the remaining senses. Environmental enrichment is so far the best-known method to compensate sensorial deprivation. The aim of this work is to study the effects of exercise alone, and of an enriched environment combined with exercise, on astroglial population in order to observe the effects of exercise by itself, or the potential synergistic effect during the rat visual system development. Pregnant Sprague-Dawley rats were raised in one of the following rearing conditions: in total darkness and enriched environment conditions with physical exercise, and in total darkness with voluntary physical exercise. Astrocytic density was estimated by immunohistochemistry for S-100β protein and quantifications were performed in layer IV. The somatosensorial cortex barrel field was also studied as control. Our main result shows that an enriched environment combined with voluntary physical exercise manages to reverse the negative effects induced by darkness over the astroglial population of both the visual and the somatosensory cortices. On the other hand, exercise alone only produces effects upon the astroglial population of the somatosensory cortex, and less so when combined with an enriched environment.