Susana Bulnes
University of the Basque Country
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Susana Bulnes.
Neural Plasticity | 2012
Harkaitz Bengoetxea; Naiara Ortuzar; Susana Bulnes; Irantzu Rico-Barrio; José Vicente Lafuente; Enrike G. Argandoña
During postnatal development, sensory experience modulates cortical development, inducing numerous changes in all of the components of the cortex. Most of the cortical changes thus induced occur during the critical period, when the functional and structural properties of cortical neurons are particularly susceptible to alterations. Although the time course for experience-mediated sensory development is specific for each system, postnatal development acts as a whole, and if one cortical area is deprived of its normal sensory inputs during early stages, it will be reorganized by the nondeprived senses in a process of cross-modal plasticity that not only increases performance in the remaining senses when one is deprived, but also rewires the brain allowing the deprived cortex to process inputs from other senses and cortices, maintaining the modular configuration. This paper summarizes our current understanding of sensory systems development, focused specially in the visual system. It delineates sensory enhancement and sensory deprivation effects at both physiological and anatomical levels and describes the use of enriched environment as a tool to rewire loss of brain areas to enhance other active senses. Finally, strategies to apply restorative features in human-deprived senses are studied, discussing the beneficial and detrimental effects of cross-modal plasticity in prostheses and sensory substitution devices implantation.
International Review of Neurobiology | 2012
José Vicente Lafuente; Naiara Ortuzar; Harkaitz Bengoetxea; Susana Bulnes; Enrike G. Argandoña
Angioneurines are a family of molecules that include vascular growth factors such as VEGF, neurotrophins such as BDNF, IGF-I, and Erythropoietin, among others. They affect both neural and vascular processes. Due to the fact that all of them act over glia, we propose the term angioglioneurins to name them. They play a key role in the neurogliovascular unit that represents the functional core maintaining BBB. Although delivery to CNS is still an unsolved problem nowadays, exogenous angioglioneurin administration represents a promising therapeutic strategy for many neurological pathologies due to their neurotrophic and neurogenic role. In brains, VEGF is produced by neurons and astrocytes in different stages and situation, binding to tyrosine kinase receptors and also to neuropilin family. This fact reinforces its key role in the cross talk between neural and vascular development and activity. Angioglioneurins described in this report might become an important therapeutic resource in CNS restoration, especially in pathologies as stroke or traumatic brain injury.
Current Neurovascular Research | 2012
Enrike G. Argandoña; Harkaitz Bengoetxea; Naiara Ortuzar; Susana Bulnes; Irantzu Rico-Barrio; José Vicente Lafuente
Brain postnatal development is modulated by adaptation and experience. Experience-mediated changes increase neuronal activity leading to increased metabolic demands that involve adaptive changes including ones at the microvascular network. Therefore, vascular environment plays a key role in central nervous system (CNS) development and function in health and disease. Trophic factors are crucial in CNS development and cell survival in adults. They participate in protection and proliferation of neuronal, glial and endothelial cells. Among the most important molecules are: the proangiogenic vascular endothelial growth factor (VEGF), the neurotrophin brain derived neurotrophic factor (BDNF), insulin growth factor (IGF-I) and the glycoprotein erythropoietin (EPO). We propose the term angioglioneurins to define molecules acting on the three components of the neurogliovascular unit. We have previously reported the effects of environmental modifications on the three components of the neurogliovascular unit during the postnatal development. We have also described the main role played by VEGF in the experience-induced postnatal changes. Angioglioneurin administration, alone or in combination with other neuroprotective strategies such as environmental enrichment, has been proposed as a non-invasive therapeutic strategy against several CNS diseases.
Acta neurochirurgica | 2010
Susana Bulnes; Enrike G. Argandoña; Harkaitz Bengoetxea; O. Leis; Naiara Ortuzar; José Vicente Lafuente
Brain edema in gliomas is an epiphenomenon related to blood-brain-barrier (BBB) breakdown in which endothelial nitric oxide synthase (eNOS) plays a key role. When induced by vascular endothelial growth factor (VEGF), eNOS synthesizes nitric oxide that increases vascular permeability. We investigated the relationship between eNOS, VEGF and BBB dysfunction in experimental gliomas.Tumors were produced in Sprague-Dawley rats by transplacentary administration of Ethylnitrosourea (ENU). Immunoexpression of eNOS and VEGF(165) was studied to identify locations of vascular permeability. BBB permeability was evaluated using gadolinium and intravital dyes and BBB integrity by endothelial barrier antigen (EBA), glucose transporter-1 (GluT-1) and occludin immunostaining. Low grade gliomas displayed constitutive eNOS expression in endothelial cells and in VEGF-positive astrocytes surrounding vessels. Malignant gliomas overexpressed eNOS in aberrant vessels and displayed numerous adjacent reactive astrocytes positive for VEGF. Huge dilated vessels inside tumors and glomeruloid vessels on the periphery of the tumor showed strong immunopositivity for eNOS and a lack of occludin and EBA staining in several vascular sections. BBB dysfunction on these aberrant vessels caused increased permeability as shown by Gadolinium contrast enhancement and intravital dye extravasation.These findings support the central role of eNOS in intra- and peritumoral edema in ENU-induced gliomas.
Journal of Signal Transduction | 2012
Susana Bulnes; Harkaitz Bengoetxea; Naiara Ortuzar; Enrike G. Argandoña; A García-Blanco; Irantzu Rico-Barrio; José Vicente Lafuente
The angiogenesis process is a key event for glioma survival, malignancy and growth. The start of angiogenesis is mediated by a cascade of intratumoural events: alteration of the microvasculature network; a hypoxic microenvironment; adaptation of neoplastic cells and synthesis of pro-angiogenic factors. Due to a chaotic blood flow, a consequence of an aberrant microvasculature, tissue hypoxia phenomena are induced. Hypoxia inducible factor 1 is a major regulator in glioma invasiveness and angiogenesis. Clones of neoplastic cells with stem cell characteristics are selected by HIF-1. These cells, called “glioma stem cells” induce the synthesis of vascular endothelial growth factor. This factor is a pivotal mediator of angiogenesis. To elucidate the role of these angiogenic mediators during glioma growth, we have used a rat endogenous glioma model. Gliomas induced by prenatal ENU administration allowed us to study angiogenic events from early to advanced tumour stages. Events such as microvascular aberrations, hypoxia, GSC selection and VEGF synthesis may be studied in depth. Our data showed that for the treatment of gliomas, developing anti-angiogenic therapies could be aimed at GSCs, HIF-1 or VEGF. The ENU-glioma model can be considered to be a useful option to check novel designs of these treatment strategies.
Journal of Molecular Neuroscience | 2007
Susana Bulnes; José Vicente Lafuente
Growth of solid tumors is highly dependent on angiogenesis. During tumor development, neoplastic cells switch to an angiogenic phenotype, playing a significant role in the expression of the vascular endothelial growth factor (VEGF). Seventy-two brain gliomas were induced in Sprague Dawley rats by prenatal exposure to ethylnitrosourea (ENU). Screening and location of tumors was carried out using magnetic resonance imaging (MRI). Conventional histology and immunocytochemistry for antibodies against glial fibrillary acidic protein (GFAP), S-100, NF, oligodendrocyte Ab-2, Ki-67, and VEGF165 were performed. The proliferation index (PI) was calculated from the Ki-67 labeling index, and the concentration of VEGF165 was quantified by enzyme-linked immunosorbent assay (ELISA). In vivo identification of macro- and microtumor appears to be useful to lead morphological and biochemical studies. Histopathology allows us to identify microtumors as classic oligodendrogliomas (CO; mean PI of 6.01 ± 2.8%) and macrotumors as anaplastic oligodendrogliomas (AO; mean PI of 14.06 ± 5%). Classic oligodendrogliomas show scarce VEGF165 expression whereas anaplastic ones display VEGF165 protein level 100-fold increased respect to CO. Astrocytes, neoplastic, and endothelial cells show differential immunostaining patterns from the border to the core of neoplasm. Positive structures for VEGF and their distribution vary according to PI increase. Anaplastic gliomas displaying VEGF-positive intratumor capillaries correspond to the highest PI values. To identify the “angiogenic switch,” we propose the glioma stage characterized by VEGF immunopositive neoplastic cells inside the tumor and positive endothelial cells surrounding it.
Brain Research | 2012
Enrike G. Argandoña; Harkaitz Bengoetxea; Susana Bulnes; Irantzu Rico-Barrio; Naiara Ortuzar; José Vicente Lafuente
VEGF is the major angiogenic and vascular permeability factor in health and disease. Vascular development depends on function, and in sensory areas is experience-dependent. Our aim was to investigate, qualitatively and quantitatively, the effects of intracortical infusion and neutralisation of VEGF during the first days of the critical visual period, when peak levels of endogenous VEGF secretion are reached. VEGF was intracortically delivered into middle cortical layers of P18 Long-Evans rats. Another cohort received anti-VEGF. Vehicle (PBS)-infused and non-operated animals were used as controls. Various immunopathological analyses were performed: Endothelial Barrier Antigen (EBA) for the BBB integrity and GFAP for astroglial response. Vascular density was measured by Butyryl Cholinesterase Histochemistry, neuronal density by NeuN immunohistochemistry and apoptosis by TUNEL staining. VEGF levels were measured by Western Blot. Decreased vascular permeability was evoked in VEGF-infused rats whilst EBA expression remained constant, suggesting a preserved BBB function. When VEGF was blocked, tissue showed a higher degree of extravasation and a decreased number of EBA-positive vessels surrounding the injury. Lesion induced by cannula implantation annulled the normal increase in vascular density and the decrease in neuronal density during this time. VEGF rescued in part the vascular increase, and also prevented physiological and pathological neuronal death. VEGF blockade induced a higher amount of neural loss and lower astrocytic reaction. Our results support the role of VEGF as extending beyond vascularization, preventing physiological and pathological neuronal death, not only in the injured hemisphere but also in the intact one suggesting a process of transhemispheric diaschisis.
Acta neurochirurgica | 2010
Naiara Ortuzar; Enrike G. Argandoña; Harkaitz Bengoetxea; O. Leis; Susana Bulnes; José Vicente Lafuente
We investigated the effects of exogenous Vascular Endothelial Growth Factor VEGF combined with an enriched environment on BBB integrity after a minimal trauma induced during the first days of the critical visual period in rats, when peak levels of endogenous VEGF secretion are reached. VEGF was administered using osmotic mini-pumps placed in middle cortical layers of P18 Long-Evansrats. Tissue changes were evaluated using conventional histology. BBB integrity was shown by immunohistochemistry techniques for EBA and GluT-1. Mini-pump implantation produced a wider cavity in anti-VEGF infused rats. In VEGF-infused rats there was a damaged region around the cannula that was smaller in rats raised in an enriched environment (EE). The administration of VEGF induced a high concentration of plasma proteins in the neuropil around the point of cannula placement and a high inflammatory reaction. VEGF-infused rats raised in an EE showed a lower degree of extravasation and better tissue preservation. Anti-VEGF administration produced a lower protein expression profile and more widespread deterioration of tissue. Double immunofluorescence for EBA and GluT-1 showed that the administration of VEGF preserves the tissue, which remains present but not fully functional. In contrast, a combination of VEGF administration and an EE partially protects the functionally damaged tissue with a higher preservation of BBB integrity.
Histology and Histopathology | 2016
García-Blanco A; Susana Bulnes; Pomposo I; Carrasco A; José Vicente Lafuente
Nestin+cells from spheroid aggregates display typical histopathological features compatible with cell stemness. Nestin and CD133+cells found in glioblastomas, distributed frequently around aberrant vessels, are considered as potential cancer stem cells. They are possible targets for antitumoral therapy because they lead the tumorigenesis, invasiveness and angiogenesis. However, little is known about their role and presence in low-grade gliomas. The aim of this work is to localize and characterize the distribution of these cells inside tumors during the development of experimental endogenous glioma. For this study, a single dose of Ethyl-nitrosourea was injected into pregnant rats. Double immunofluorescences were performed in order to identify stem-like and differentiated cells. Low-grade gliomas display Nestin+cells distributed throughout the tumor. More malignant gliomas show, in addition to that, a perivascular location with some Nestin+cells co-expressing CD133 or VEGF, and the intratumoral spheroid aggregates of Nestin/CD133+cells. These structures are encapsulated by well-differentiated VEGF/GFAP+cells. Spheroid aggregates increase in size in the most malignant stages. Spheroid aggregates have morphological and phenotypic similarities to in vitro neurospheres and could be an in vivo analogue of them. These arrangements could be a reservoir of undifferentiated cells formed to escape adverse microenvironments.
Oncotarget | 2018
Susana Bulnes; Garazi Bermúdez; José Vicente Lafuente
Notch-1 and osteopontin (OPN) mediate angiogenesis and glioma stem-like cell (GSLC) maintenance. However, the relationship between these molecules and GSLCs during the development of glioma is unknown. We investigate the expression of Notch-1, OPN and vascular endothelial growth factor (VEGF) associated to the stemness markers nestin and CD133 in three stages of murine gliomas induced by N-ethyl-N-nitrosourea (ENU). Notch-1 and OPN overexpress in the intermediate stage (II), which corresponds to the “angiogenesis switch”. Nestin+ cells appear in all stages of ENU-glioma but CD133 only from stage II on. In stage III, neoplastic cells expressing nestin, CD133 and nestin/CD133 reside in spheroid-like aggregates (SAs) and in the neoangiogenic border. These aggregates show Notch-1 and VEGF+ surrounding cells and a significant size and density increase with respect to stage I (3.3 ± 1.5 to 22.4 ± 6.3 µm2, n° = 0.3 ± 0.1 to 4.2 ± 0.9, from stage I to stage III, respectively). OPN expression increases in correlation to the glioma malignancy from 4.5 ± 1.8% (I) to 12.3 ± 1.2% of OPN+ cells (III). It predominates in astrocyte-like cells of the neoangiogenic border, displaying co-location with VEGF and CD133. The OPN immunopositivity distribution correlates with the CD133 distribution. In conclusion, OPN co-expressing with CD133 contributes to the identification of GSLCs in the neoangiogenic border, while Notch-1 is present around SAs in advanced stages. The ENU-glioma, mainly in stage II, is a useful tool for assessing new antitumour therapies against these molecules.