Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Naiyf S. Alharbi is active.

Publication


Featured researches published by Naiyf S. Alharbi.


Scientific Reports | 2016

In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae.

Abdulrahman Syedahamed Haja Hameed; Chandrasekaran Karthikeyan; Abdulazees Parveez Ahamed; Nooruddin Thajuddin; Naiyf S. Alharbi; Sulaiman Ali Alharbi; Ganasan Ravi

Pure ZnO and Neodymium (Nd) doped ZnO nanoparticles (NPs) were synthesized by the co-precipitation method. The synthesized nanoparticles retained the wurtzite hexagonal structure. From FESEM studies, ZnO and Nd doped ZnO NPs showed nanorod and nanoflower like morphology respectively. The FT-IR spectra confirmed the Zn-O stretching bands at 422 and 451 cm−1 for ZnO and Nd doped ZnO NPs respectively. From the UV-VIS spectroscopic measurement, the excitonic peaks were found around 373 nm and 380 nm for the respective samples. The photoluminescence measurements revealed that the broad emission was composed of ten different bands due to zinc vacancies, oxygen vacancies and surface defects. The antibacterial studies performed against extended spectrum β-lactamases (ESBLs) producing strains of Escherichia coli and Klebsiella pneumoniae showed that the Nd doped ZnO NPs possessed a greater antibacterial effect than the pure ZnO NPs. From confocal laser scanning microscopic (CLSM) analysis, the apoptotic nature of the cells was confirmed by the cell shrinkage, disorganization of cell wall and cell membrane and dead cell of the bacteria. SEM analysis revealed the existence of bacterial loss of viability due to an impairment of cell membrane integrity, which was highly consistent with the damage of cell walls.


Biofouling | 2015

One pot synthesis and anti-biofilm potential of copper nanoparticles (CuNPs) against clinical strains of Pseudomonas aeruginosa

Felix LewisOscar; Davoodbasha MubarakAli; Chari Nithya; Rajendran Priyanka; Venkatraman Gopinath; Naiyf S. Alharbi; Nooruddin Thajuddin

Pseudomonas aeruginosa, an opportunistic pathogen frequently associated with nosocomial infections, is emerging as a serious threat due to its resistance to broad spectrum antimicrobials. The biofilm mode of growth confers resistance to antibiotics and novel anti-biofilm agents are urgently needed. Nanoparticle based treatments and therapies have been of recent interest because of their versatile applications. This study investigates the anti-biofilm activity of copper nanoparticles (CuNPs) synthesized by the one pot method against P. aeruginosa. Standard physical techniques including UV–visible and Fourier transform infrared spectroscopy, X-ray diffraction and transmission electron microscopy were used to characterize the synthesized CuNPs. CuNP treatments at 100 ng ml−1 resulted in a 94, 89 and 92% reduction in biofilm, cell surface hydrophobicity and exopolysaccharides respectively, without bactericidal activity. Evidence of biofilm inhibition was also seen with light and confocal microscope analysis. This study highlights the anti-biofilm potential of CuNPs, which could be utilized as coating agents on surgical devices and medical implants to manage biofilm associated infections.


Journal of Photochemistry and Photobiology B-biology | 2017

Guazuma ulmifolia bark-synthesized Ag, Au and Ag/Au alloy nanoparticles: Photocatalytic potential, DNA/protein interactions, anticancer activity and toxicity against 14 species of microbial pathogens

Viswanathan Karthika; Ayyakannu Arumugam; Kasi Gopinath; Periyannan Kaleeswarran; Marimuthu Govindarajan; Naiyf S. Alharbi; Shine Kadaikunnan; Jamal M. Khaled; Giovanni Benelli

In the present study, we focused on a quick and green method to fabricate Ag, Au and Ag/Au alloy nanoparticles (NPs) using the bark extract of Guazuma ulmifolia L. Green synthesized metal NPs were characterized using different techniques, including UV-Vis spectroscopy, FT-IR, XRD, AFM and HR-TEM analyses. The production of Ag, Au and Ag/Au alloy NPs was observed monitoring color change from colorless to brown, followed by pink and dark brown, as confirmed by UV-Vis spectroscopy characteristic peaks at 436, 522 and 510nm, respectively. TEM shed light on the spherical shapes of NPs with size ranges of 10-15, 20-25 and 10-20nm. Biosynthesized NPs showed good catalytic activity reducing two organic dyes, 4-nitrophenol (4-NP) and Congo red (CR). UV-vis spectroscopy, fluorescence, circular dichroism spectroscopy and viscosity analyses were used to investigate the NP binding with calf thymus DNA. The binding constant of NPs with DNA calculated in UV-Vis absorption studies were 1.18×104, 1.83×104 and 2.91×104M-1, respectively, indicating that NPs were able to bind DNA with variable binding affinity: Ag/Au alloy NPs>Ag NPs>Au NPs. Ag/Au alloy NPs also showed binding activity to bovine serum albumin (BSA) over the other NPs. Ag and Ag/Au alloy NPs exhibited good antimicrobial activity on 14 species of microbial pathogens. In addition, the cytotoxic effects of Ag/Au alloy NPs were studied on human cervical cancer cells (HeLa) using MTT assay. Overall, our work showed the promising potential of bark-synthesized Ag and Ag/Au alloy NPs as cheap sources to develop novel and safer photocatalytic, antimicrobial and anticancer agents.


Journal of Photochemistry and Photobiology B-biology | 2017

Green synthesis of gold nanoparticles using a cheap Sphaeranthus indicus extract: Impact on plant cells and the aquatic crustacean Artemia nauplii

Chinnasamy Balalakshmi; Kasi Gopinath; Marimuthu Govindarajan; Ravi Lokesh; Ayyakannu Arumugam; Naiyf S. Alharbi; Shine Kadaikunnan; Jamal M. Khaled; Giovanni Benelli

The impact of green-fabricated gold nanoparticles on plant cells and non-target aquatic species is scarcely studied. In this research, we reported an environment friendly technique for the synthesis of gold nanoparticles (Au NPs) using the Sphaeranthus indicus leaf extract. The formation of the metal NPs was characterized by UV-Visible and FT-IR spectroscopy, XRD, SEM and TEM analyses. The UV-Visible spectra of Au NPs showed a surface plasmon resonance peak at 531nm. FT-IR analysis indicated functional bio-molecules associated with Au NPs formation. The crystalline nature of Au nanoparticles was confirmed by their XRD diffraction pattern. TEM revealed the spherical shape with a mean particle size of 25nm. Au NPs was tested at 0, 1, 3, 5, 7 and 10% doses in mitotic cell division assays, pollen germination experiments, and in vivo toxicity trials against the aquatic crustacean Artemia nauplii. Au NPs did not show any toxic effects on plant cells and aquatic invertebrates. Notably, Au NPs promoted mitotic cell division in Allium cepa root tip cells and germination of Gloriosa superba pollen grains. Au NPs showed no mortality on A. nauplii, all the tested animals showed 100% survivability. Therefore, these Au NPs have potential applications in the development of pollen germination media and plant tissue culture.


Journal of Photochemistry and Photobiology B-biology | 2018

Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity

Baskaralingam Vaseeharan; Subramanian Kalyani; Balan Banumathi; Marimuthu Govindarajan; Naiyf S. Alharbi; Shine Kadaikunnan; Mohammed N. Al-anbr; Jamal M. Khaled; Giovanni Benelli

The bioactivity of semiconductor nanocomplexes has been poorly studied in the field of pesticide science. In this research, the synthesis of zinc nanoparticles was accomplished through new effortless green chemistry process, using the Ulva lactuca seaweed extract as a reducing and capping agent. The production of U. lactuca-fabricated ZnO nanoparticles (Ul-ZnO Nps) was characterized by powder X-ray diffraction (XRD), UV-visible, Fourier transform infrared (FTIR) spectroscopy, selected area electron diffraction (SAED) analysis and transmission electron microscopy (TEM). The U. lactuca-fabricated ZnO NPs were tested for their photodegradative action against organic dyes, as well as for antibiofilm and larvicidal activities. The UV visible absorbance spectrum of Ul-ZnO NPs exhibited the absorbance band at 325nm and TEM highlighted average crystallite sizes of nanoparticles of 10-50nm. Methylene blue (MB) dye was efficiently corrupted under sunlight in presence of Ul-ZnO NPs. Excellent bactericidal activity was shown by the Ul-ZnO Nps on Gram positive (Bacillus licheniformis and Bacillus pumilis) and Gram negative (Escherichia coliand Proteus vulgaris) bacteria. High antibiofilm potential was noted under both dark and sunlight conditions. The impact of a single treatment with Ul-ZnO NPs on biofilm architecture was also analyzed by confocal laser scanning microscopy (CLSM) on both Gram positive and Gram negative bacteria. Moreover, Ul-ZnO NPs led to 100% mortality of Aedes aegypti fourth instar larvae at the concentration of 50μg/ml within 24h. The effects of ZnO nanoparticle-based treatment on mosquito larval morphology and histology were monitored. Overall, based on our results, we believe that the synthesis of multifunctional Ul-ZnO Nps using widely available seaweed products can be promoted as a potential eco-friendly option to chemical methods currently used for nanosynthesis of antimicrobials and insecticides.


Parasitology Research | 2017

Larvicidal activity of Blumea eriantha essential oil and its components against six mosquito species, including Zika virus vectors: the promising potential of (4E,6Z)-allo-ocimene, carvotanacetone and dodecyl acetate

Giovanni Benelli; Marimuthu Govindarajan; Mohan Rajeswary; Sengamalai Senthilmurugan; Periasamy Vijayan; Naiyf S. Alharbi; Shine Kadaikunnan; Jamal M. Khaled

The effective and environmentally sustainable control of mosquitoes is a challenge of essential importance. This is due to the fact that some invasive mosquitoes, with special reference to the Aedes genus, are particularly difficult to control, due to their high ecological plasticity. Moreover, the indiscriminate overuse of synthetic insecticides resulted in undesirable effects on human health and non-target organisms, as well as resistance development in targeted vectors. Here, the leaf essential oil (EO) extracted from a scarcely studied plant of ethno-medicinal interest, Blumea eriantha (Asteraceae), was tested on the larvae of six mosquitoes, including Zika virus vectors. The B. eriantha EO was analyzed by GC and GC-MS. The B. eriantha EO showed high toxicity against 3rd instar larvae of six important mosquito species: Anopheles stephensi (LC50=41.61 μg/ml), Aedes aegypti (LC50=44.82 μg/ml), Culex quinquefasciatus (LC50 =48.92 μg/ml), Anopheles subpictus (LC50=51.21 μg/ml), Ae. albopictus (LC50=56.33 μg/ml) and Culex tritaeniorhynchus (LC50=61.33 μg/ml). The major components found in B. eriantha EO were (4E,6Z)-allo-ocimene (12.8%), carvotanacetone (10.6%), and dodecyl acetate (8.9%). Interestingly, two of the main EO components, (4E,6Z)-allo-ocimene and carvotanacetone, achieved LC50 lower than 10 μg/ml on all tested mosquito species. The acute toxicity of B. eriantha EO and its major constituents on four aquatic predators of mosquito larval instars was limited, with LC50 ranging from 519 to 11.431 μg/ml. Overall, the larvicidal activity of (4E,6Z)-allo-ocimene and carvotanacetone far exceed most of the LC50 calculated in current literature on mosquito botanical larvicides, allowing us to propose both of them as potentially alternatives for developing eco-friendly mosquito control tools.


Journal of Photochemistry and Photobiology B-biology | 2017

Biopolymer zein-coated gold nanoparticles: Synthesis, antibacterial potential, toxicity and histopathological effects against the Zika virus vector Aedes aegypti

Periyakaruppan Suganya; Baskaralingam Vaseeharan; Sekar Vijayakumar; Banumathi Balan; Marimuthu Govindarajan; Naiyf S. Alharbi; Shine Kadaikunnan; Jamal M. Khaled; Giovanni Benelli

The control of multidrug-resistant bacteria as well as insect pests and vectors is timely and important now a days. The present study was designed to evaluate the in vitro antibacterial, antibiofilm and mosquito larvicidal effects of gold nanoparticles synthesized using the zein biopolymer (Ze-AuNPs) against Gram positive (Bacillus pumilus and Bacillus subtilis), Gram negative (Shigella sonnei and Pseudomonas aeruginosa) bacteria and third instar larvae of the dengue and Zika virus vector Aedes aegypti. The synthesized Ze-AuNPs were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The antibacterial assays testing Ze-AuNPs at 100μg/ml showed that the zones of inhibition against Gram positive species B. pumilus and B. subtilis were 13.9 and 14.2mm, respectively, while for Gram negative S. sonnei and P. aeruginosa they were 18.1 and 18.4mm, respectively. Light and confocal laser scanning microscopy (CLSM) confirmed the interruption and disintegration of bacterial biofilm post-treatment with Ze-AuNPs at 100μg/ml. In larvicidal assays on A. aegypti, HAuCl4 and Ze-AuNPs treated third instar larvae of A. aegypti showed LC50 of 26.6 and 6.81mg/L, respectively, and LC90 of 81.1 and 13.6mg/L respectively. The histopathological analysis of A. aegypti treated with Ze-AuNPs showed complete disintegration of abdominal region, particularly the midgut and caeca, with loss of lateral and caudal hairs. The stereomicroscopic visualization of A. aegypti treated with Ze-AuNPs showed the loss of upper head hair, lower head hair, antenna hair, lateral hair and caudal hair. Overall, the study concludes that Ze-AuNPs have excellent antibacterial, antibiofilm effects and has ability to control the larval populations of A. aegypti mosquitoes.


Journal of The Saudi Pharmaceutical Society | 2015

Synthesis and characterization of biocompatibility of tenorite nanoparticles and potential property against biofilm formation.

Davoodbasha MubarakAli; Jegatheesan Arunkumar; Pratheesh Pooja; Gopalakrishnan Subramanian; Nooruddin Thajuddin; Naiyf S. Alharbi

Aim is to assess the anti-biofilm property of tenorite nanoparticles and to study their suitability as a possible coating material for medical implants. Tenorite (CuO) nanoparticles were synthesized by the optimized thermal decomposition method and characterized using TEM, XRD, FTIR and UV–Vis analysis. Their influence on biofilm formation of microbes was studied by growing multi drug resistant bacterial strains in the presence or absence of these nanoparticles at various concentrations. The cytotoxicity of nanoparticles on mammalian cells was studied at the corresponding concentrations. The nanoparticles were found to be uniformly dispersed, spherical shaped and <50 nm in size. They showed various degrees of anti-biofilm property against clinically isolated, biofilm forming multi drug resistant microorganisms such as Staphylococcus aureus, Pseudomonas fluorescens, Burkholderia mallei, Klebsiella pneumoniae, and Escherichia coli. Furthermore, Hep-2 cells showed excellent viability at tenorite nanoparticles concentration toxic to microbial growth. These results indicate that tenorite nanoparticles may be ideal candidates for being utilized as coating on medical implants in general and dental implants in particular.


Journal of Trace Elements in Medicine and Biology | 2018

Bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed high antibiofilm activity and larvicidal toxicity against malaria and Zika virus vectors

Muthukumar Abinaya; Baskaralingam Vaseeharan; Mani Divya; Aruna Sharmili; Marimuthu Govindarajan; Naiyf S. Alharbi; Shine Kadaikunnan; Jamal M. Khaled; Giovanni Benelli

In this study, a novel and effective approach was performed to synthesize ZnO nanoparticles (ZnO NPs) using the exopolysaccharides (EPS) from the probiotic strain Bacillus licheniformis Dahb1. EPS acted as reducing and stabilizing agent for the formation of EPS-ZnO NPs by co-precipitation method. Structural characterization was investigated by a surface plasma resonance centered at 375nm in UV-vis spectrum. FTIR spectrum exhibited functional groups with strong absorption peak at 3814.7-420cm-1. XRD showed the crystalline nature of EPS-ZnO NPs. TEM showed that the EPS-ZnO NPs were hexagonal in shape, with size within the range of 10-100nm. The presence of Zn was confirmed by EDX analysis. Antibacterial activity of EPS-ZnO NPs was demonstrated as 100μg/ml significantly inhibited the effective growth control of Gram-negative (Pseudomonas aeruginosa and Proteus vulgaris) and Gram-positive (Bacillus subtilis and Bacillus pumilus) bacteria. Light microscopy and confocal laser scanning microscopy evidenced that the antibiofilm activity of EPS-ZnO NPs was higher against Gram-negative bacteria over Gram positive bacteria. EPS-ZnO NPs also inhibited the biofilm growth of Candida albicans at the concentration of 75μg/ml. The hemolytic test showed low cytotoxicity of EPS-ZnO NPs at 5mg/ml. In addition, EPS-ZnO NPs achieved 100% mortality against third instars mosquito larvae of Anopheles stephensi and Aedes aegypti at very low doses. Moreover, histology studies revealed the presence of damaged cells and tissues in the mid-gut of treated mosquito larvae. The multipurpose properties of EPS-ZnO NPs revealed in the present study can be further considered for pharmaceutical, parasitological and entomological applications.


Journal of Photochemistry and Photobiology B-biology | 2016

One-pot biogenic fabrication of silver nanocrystals using Quisqualis indica: Effectiveness on malaria and Zika virus mosquito vectors, and impact on non-target aquatic organisms

Marimuthu Govindarajan; Periasamy Vijayan; Shine Kadaikunnan; Naiyf S. Alharbi; Giovanni Benelli

Currently, mosquito vector control is facing a number of key challenges, including the rapid development of resistance to synthetic pesticides and the recent spread of aggressive arbovirus outbreaks. The biosynthesis of silver nanoparticles (AgNPs) is currently considered an environmental friendly alternative to the employ of pyrethroids, carbamates and microbial agents (e.g. Bacillus thuringiensis var. israelensis), since AgNPs are easy to produce, effective and stable in the aquatic environment. However, their biophysical features showed wide variations according to the botanical agent using for the green synthesis, outlining the importance of screening local floral resources used as reducing and stabilizing agents. In this study, we focused on the biophysical properties and the mosquitocidal action of Quisqualis indica-fabricated AgNPs. AgNPs were characterized using spectroscopic (UV, FTIR, XRD) and microscopic (AFM, SEM, TEM and EDX) techniques. AFM, SEM and TEM confirmed the synthesis of poly-dispersed AgNPs with spherical shape and size ranging from 1 to 30nm. XRD shed light on the crystalline structure of these AgNPs. The acute toxicity of Quisqualis indica extract and AgNPs was evaluated against malaria, arbovirus, and filariasis vectors, Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus, as well as on three important non-target aquatic organisms. The Q. indica leaf extract showed moderate larvicidal effectiveness on Cx. quinquefasciatus (LC50=220.42), Ae. aegypti (LC50=203.63) and An. stephensi (LC50=185.98). Q. indica-fabricated AgNPs showed high toxicity against Cx. quinquefasciatus (LC50=14.63), Ae. aegypti (LC50=13.55) and An. stephensi (LC50=12.52), respectively. Notably, Q. indica-synthesized AgNPs were moderately toxic to non-target aquatic mosquito predators Anisops bouvieri (LC50=653.05μg/mL), Diplonychus indicus (LC50=860.94μg/mL) and Gambusia affinis (LC50=2183.16μg/mL), if compared to the targeted mosquitoes. Overall, the proposed one-pot biogenic fabrication of AgNPs using Q. indica is a low-cost and eco-friendly tool in the fight against Zika virus, malaria and filariasis vectors, with little impact against non-target aquatic mosquito predators.

Collaboration


Dive into the Naiyf S. Alharbi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge