Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nam-Chul Ha is active.

Publication


Featured researches published by Nam-Chul Ha.


Molecules and Cells | 2015

Structure of the Tripartite Multidrug Efflux Pump AcrAB-TolC Suggests an Alternative Assembly Mode

Jin-Sik Kim; Hyeongseop Jeong; Saemee Song; Hye-Yeon Kim; Kangseok Lee; Jaekyung Hyun; Nam-Chul Ha

Escherichia coli AcrAB-TolC is a multidrug efflux pump that expels a wide range of toxic substrates. The dynamic nature of the binding or low affinity between the components has impeded elucidation of how the three components assemble in the functional state. Here, we created fusion proteins composed of AcrB, a transmembrane linker, and two copies of AcrA. The fusion protein exhibited acridine pumping activity, suggesting that the protein reflects the functional structure in vivo. To discern the assembling mode with TolC, the AcrBA fusion protein was incubated with TolC or a chimeric protein containing the TolC aperture tip region. Three-dimensional structures of the complex proteins were determined through transmission electron microscopy. The overall structure exemplifies the adaptor bridging model, wherein the funnel-like AcrA hexamer forms an intermeshing cogwheel interaction with the α-barrel tip region of TolC, and a direct interaction between AcrB and TolC is not allowed. These observations provide a structural blueprint for understanding multidrug resistance in pathogenic Gram-negative bacteria.


Journal of Controlled Release | 2014

Gold nanoparticle–DNA aptamer composites as a universal carrier for in vivo delivery of biologically functional proteins

Sang-Mi Ryou; Ji-Hyun Yeom; Hyo Jung Kang; Miae Won; Jin-Sik Kim; Boeun Lee; Maeng-Je Seong; Nam-Chul Ha; Jeehyeon Bae; Kangseok Lee

Although the delivery of biologically functional protein(s) into mammalian cells could be of tremendous value to biomedical research, the development of such technology has been hindered by the lack of a safe and effective delivery method. Here, we present a simple, efficient, and versatile gold nanoparticle-DNA aptamer conjugate (AuNP-Apt)-based system, with nanoblock-like properties, that allows any recombinant protein to be loaded without additional modifications and delivered into mammalian living systems. AuNP-Apt-based protein delivery system was able to deliver various proteins into variety of cell types in vitro without showing cytotoxicity. This AuNP-Apt system was also effective for the local and systemic targeted delivery of proteins in vivo. A local injection of the AuNP-Apt loaded with the apoptosis-inducing BIM protein efficiently inhibited the growth of xenograft tumors in mice. Furthermore, an intravenous injection of AuNP-Apt loaded with both epidermal growth factor (EGF) and BIM resulted in the targeted delivery of BIM into a xenograft tumor derived from EGF receptor-overexpressing cancer cells with no detectable systemic toxicity. Our findings show that this system can serve as an innovative platform for the development of protein-based biomedical applications.


Journal of Microbiology | 2015

Molecular architecture of the bacterial tripartite multidrug efflux pump focusing on the adaptor bridging model

Saemee Song; Jin-Sik Kim; Kangseok Lee; Nam-Chul Ha

Gram-negative bacteria expel a wide range of toxic substances through tripartite drug efflux pumps consisting of an inner membrane transporter, an outer membrane channel protein, and a periplasmic adaptor protein. These pumps form tripartite assemblies which can span the entire cell envelope, including the inner and outer membranes. There have been controversial findings regarding the assembly of the individual components in tripartite drug efflux pumps. Recent structural and functional studies have advanced our understanding of the assembly and working mechanisms of the pumps. Here, we re-evaluate the assembly models based on recent structural and functional studies. In particular, this study focuses on the ‘adaptor bridging model’, highlighting the intermeshing cogwheel-like interactions between the tip regions of the outer membrane channel protein and the periplasmic adaptor protein in the hexameric assembly.


PLOS ONE | 2014

Interaction Mediated by the Putative Tip Regions of MdsA and MdsC in the Formation of a Salmonella-Specific Tripartite Efflux Pump

Saemee Song; Soonhye Hwang; Seunghwa Lee; Nam-Chul Ha; Kangseok Lee

To survive in the presence of a wide range of toxic compounds, gram-negative bacteria expel such compounds via tripartite efflux pumps that span both the inner and outer membranes. The Salmonella-specific MdsAB pump consists of MdsB, a resistance-nodulation-division (RND)-type inner membrane transporter (IMT) that requires the membrane fusion protein (MFP) MdsA, and an outer membrane protein (OMP; MdsC or TolC) to form a tripartite efflux complex. In this study, we investigated the role of the putative tip regions of MdsA and its OMPs, MdsC and TolC, in the formation of a functional MdsAB-mediated efflux pump. Comparative analysis indicated that although sequence homologies of MdsA and MdsC with other MFPs and OMPs, respectively, are extremely low, key residues in the putative tip regions of these proteins are well conserved. Mutagenesis studies on these conserved sites demonstrated their importance for the physical and functional interactions required to form an MdsAB-mediated pump. Our studies suggest that, despite differences in the primary amino acid sequences and functions of various OMPs and MFPs, interactions mediated by the conserved tip regions of OMP and MFP are required for the formation of functional tripartite efflux pumps in gram-negative bacteria.


Biochemical and Biophysical Research Communications | 2014

Periplasmic disulfide isomerase DsbC is involved in the reduction of copper binding protein CueP from Salmonella enterica serovar Typhimurium

Bo-Young Yoon; Jin-Sik Kim; Si-Hyeon Um; Inseong Jo; Jin-Wook Yoo; Kangseok Lee; Yong-Hak Kim; Nam-Chul Ha

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen with the ability to survive and replicate in macrophages. Periplasmic copper binding protein CueP is known to confer copper resistance to S. Typhimurium, and has been implicated in ROS scavenge activity by transferring the copper ion to a periplasmic superoxide dismutase or by directly reducing the copper ion. Structural and biochemical studies on CueP showed that its copper binding site is surrounded by conserved cysteine residues. Here, we present evidence that periplasmic disulfide isomerase DsbC plays a key role in maintaining CueP protein in the reduced state. We observed purified DsbC protein efficiently reduced the oxidized form of CueP, and that it acted on two (Cys104 and Cys172) of the three conserved cysteine residues. Furthermore, we found that a surface-exposed conserved phenylalanine residue in CueP was important for this process, which suggests that DsbC specifically recognizes the residue of CueP. An experiment using an Escherichia coli system confirmed the critical role played by DsbC in the ROS scavenge activity of CueP. Taken together, we propose a molecular insight into how CueP collaborates with the periplasmic disulfide reduction system in the pathogenesis of the bacteria.


PLOS ONE | 2016

The Crystal Structure of the YknZ Extracellular Domain of ABC Transporter YknWXYZ from Bacillus amyloliquefaciens

Yongbin Xu; Jianyun Guo; Lulu Wang; Rui Jiang; Xiaoling Jin; Jing Liu; Shengdi Fan; Chunshan Quan; Nam-Chul Ha

Bacillus possesses the peptide toxin Sporulation-Delaying Protein (SDP), which can kill cells within a biofilm to support continued growth, thereby delaying the onset of biofilm sporulation. The four-component transporter YknWXYZ acts as a major SDP efflux pump to protect cells against the endogenous SDP toxin, for which YknYZ is a non-canonical ATP-binding cassette (ABC)-type transporter. YknYZ consists of the following two components: (1) an individual protein (YknY) and (2) a respective permease (YknZ). To date, the crystal structure, molecular function, and mechanism of action of the integral membrane protein YknZ remain to be elucidated. In this study, to characterize the structural and biochemical roles of YknZ in the functional assembly of YknWXYZ, we predicted and overexpressed the YknZ extracellular domain. We determined the crystal structure of B. amyloliquefaciens YknZ at a resolution of 2.0 Å. The structure revealed that the YknZ extracellular region exhibits significant structural similarity with the MacB periplasmic domain, which is a non-canonical ABC-type transporter in the tripartite macrolide-specific efflux pump in Gram-negative bacteria. We also found that the YknZ extracellular domain can directly bind to an extracellular component of YknX. This structural and biochemical study provides insights into the assembly of YknWXYZ, which may be relevant to understanding cannibalistic peptide toxin resistance in Bacillus and controlling bacterial growth.


Journal of Microbiology | 2016

RraAS2 requires both scaffold domains of RNase ES for high-affinity binding and inhibitory action on the ribonucleolytic activity

Jihune Heo; Daeyoung Kim; Minju Joo; Boeun Lee; Sojin Seo; Jaejin Lee; Saemee Song; Ji-Hyun Yeom; Nam-Chul Ha; Kangseok Lee

RraA is a protein inhibitor of RNase E (Rne), which catalyzes the endoribonucleolytic cleavage of a large proportion of RNAs in Escherichia coli. The antibiotic-producing bacterium Streptomyces coelicolor also contains homologs of RNase E and RraA, designated as RNase ES (Rns), RraAS1, and RraAS2, respectively. Here, we report that RraAS2 requires both scaffold domains of RNase ES for high-affinity binding and inhibitory action on the ribonucleolytic activity. Analyses of the steady-state level of RNase E substrates indicated that coexpression of RraAS2 in E. coli cells overproducing Rns effectively inhibits the ribonucleolytic activity of full-length RNase ES, but its inhibitory effects were moderate or undetectable on other truncated forms of Rns, in which the N- or/and C-terminal scaffold domain was deleted. In addition, RraAS2 more efficiently inhibited the in vitro ribonucleolytic activity of RNase ES than that of a truncated form containing the catalytic domain only. Coimmunoprecipitation and in vivo cross-linking experiments further showed necessity of both scaffold domains of RNase ES for high-affinity binding of RraAS2 to the enzyme, resulting in decreased RNA-binding capacity of RNase ES. Our results indicate that RraAS2 is a protein inhibitor of RNase ES and provide clues to how this inhibitor affects the ribonucleolytic activity of RNase ES.


Acta Crystallographica Section D-biological Crystallography | 2014

Crystal structure and functional implications of LprF from Mycobacterium tuberculosis and M. bovis

Jin-Sik Kim; Li Jiao; Jeong-Il Oh; Nam-Chul Ha; Yong-Hak Kim

The Gram-positive bacteria Mycobacterium tuberculosis and M. bovis are causative agents of tuberculosis in humans and cattle. The lipoprotein LprF is found in M. tuberculosis and M. bovis but not in the nonpathogenic M. smegmatis. To date, the role of LprF remains to be elucidated. In this study, the crystal structure of LprF has been determined at 1.1 Å resolution. The overall structure is similar to that of a homologue, LprG, with a central hydrophobic cavity that binds a triacylated glycolipid. LprF exhibited a central cavity structure similar to that of LprG, but with a smaller cavity that binds two alkyl chains. Consistently, subsequent mass-spectrometric analysis revealed that the bound ligand was a diacylated glycolipid, as found in the structure. Furthermore, an increased ratio of lipoarabinomannan to lipomannan in the mycobacterial cell wall was observed when lprF was introduced into M. smegmatis. These observations suggested that LprF transfers the diacylated glycolipid from the plasma membrane to the cell wall, which might be related to the pathogenesis of the bacteria.


Infection and Immunity | 2015

MdsABC-Mediated Pathway for Pathogenicity in Salmonella enterica Serovar Typhimurium

Saemee Song; Boeun Lee; Ji-Hyun Yeom; Soonhye Hwang; Ilnam Kang; Jang-Cheon Cho; Nam-Chul Ha; Jeehyeon Bae; Kangseok Lee; Yong-Hak Kim

ABSTRACT MdsABC is a Salmonella-specific tripartite efflux pump that has been implicated in the virulence of Salmonella enterica serovar Typhimurium; however, little is known about the virulence factors associated with this pump. We observed MdsABC expression-dependent alterations in the degree of resistance to extracellular oxidative stress and macrophage-mediated killing. Thin-layer chromatography and tandem mass spectrometry analyses revealed that overexpression of MdsABC led to increased secretion of 1-palmitoyl-2-stearoyl-phosphatidylserine (PSPS), affecting the ability of the bacteria to invade and survive in host cells. Overexpression of MdsABC and external addition of PSPS similarly rendered the mdsABC deletion strain resistant to diamide. Diagonal gel analysis showed that PSPS treatment reduced the diamide-mediated formation of disulfide bonds, particularly in the membrane fraction of the bacteria. Salmonella infection of macrophages induced the upregulation of MdsABC expression and led to an increase of intracellular bacterial number and host cell death, similar to the effects of MdsABC overexpression and PSPS pretreatment on the mdsABC deletion strain. Our study shows that MdsABC mediates a previously uncharacterized pathway that involves PSPS as a key factor for the survival and virulence of S. Typhimurium in phagocytic cells.


Cell Death and Disease | 2015

Conversion of cell-survival activity of Akt into apoptotic death of cancer cells by two mutations on the BIM BH3 domain.

Jun Sung Kim; B. Ku; Tae Gyun Woo; Ah-Young Oh; Y. S. Jung; Y. M. Soh; J. H. Yeom; K. Lee; Bum-Joon Park; Byung-Ha Oh; Nam-Chul Ha

Survival and proliferation of cancer cells are often associated with hyperactivity of the serine/threonine kinase, Akt. Herein, we show that prosurvival activity of Akt can be converted into prodeath activity by embedding an Akt recognition sequence in the apoptogenic BH3 domain of human BIM. The recognition sequence was created by introducing two mutations, I155R and E158S, into the core region of the BIM BH3 domain. Although a 21-mer BIM BH3 peptide containing these two mutations bound weakly to BCL-XL and BCL-2, this peptide with phosphorylation of Ser158 bound to these proteins with a dissociation constant of <10 nM. The crystal structure of the phosphorylated peptide bound to BCL-XL revealed that the phospho-Ser158 makes favorable interactions with two BCL-XL residues, which cannot be formed with unphosphorylated Ser158. Remarkably, the designed peptide showed a cytotoxic effect on PTEN-null PC3 tumor cells whose Akt activity is aberrantly high. The cell-killing activity disappeared when the cellular Akt activity was lowered by ectopic PTEN expression. Thus, these results lay a foundation for developing a peptide or protein agent that is dormant in normal cells but is transformed into a potent apoptogenic molecule upon phosphorylation by hyperactivity of Akt in cancer cells.

Collaboration


Dive into the Nam-Chul Ha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin-Sik Kim

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Chunshan Quan

Chinese Ministry of Education

View shared research outputs
Top Co-Authors

Avatar

Yongbin Xu

Chinese Ministry of Education

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shengdi Fan

Dalian Nationalities University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lulu Wang

Dalian University of Technology

View shared research outputs
Top Co-Authors

Avatar

Xiaoling Jin

Dalian Nationalities University

View shared research outputs
Researchain Logo
Decentralizing Knowledge