Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Saemee Song is active.

Publication


Featured researches published by Saemee Song.


Journal of Biological Chemistry | 2011

Funnel-like Hexameric Assembly of the Periplasmic Adapter Protein in the Tripartite Multidrug Efflux Pump in Gram-negative Bacteria

Yongbin Xu; Minho Lee; Arne Moeller; Saemee Song; Bo-Young Yoon; Hong-Man Kim; So-Young Jun; Kangseok Lee; Nam-Chul Ha

Gram-negative bacteria expel diverse toxic chemicals through the tripartite efflux pumps spanning both the inner and outer membranes. The Escherichia coli AcrAB-TolC pump is the principal multidrug exporter that confers intrinsic drug tolerance to the bacteria. The inner membrane transporter AcrB requires the outer membrane factor TolC and the periplasmic adapter protein AcrA. However, it remains ambiguous how the three proteins are assembled. In this study, a hexameric model of the adapter protein was generated based on the propensity for trimerization of a dimeric unit, and this model was further validated by presenting its channel-forming property that determines the substrate specificity. Genetic, in vitro complementation, and electron microscopic studies provided evidence for the binding of the hexameric adapter protein to the outer membrane factor in an intermeshing cogwheel manner. Structural analyses suggested that the adapter covers the periplasmic region of the inner membrane transporter. Taken together, we propose an adapter bridging model for the assembly of the tripartite pump, where the adapter protein provides a bridging channel and induces the channel opening of the outer membrane factor in the intermeshing tip-to-tip manner.


Journal of Biological Chemistry | 2011

Functional Implications of an Intermeshing Cogwheel-Like Interaction between TolC and MacA in the Action of Macrolide-Specific Efflux Pump MacAB-TolC

Yongbin Xu; Saemee Song; Arne Moeller; Nahee Kim; Shunfu Piao; Se Hoon Sim; Mooseok Kang; Wookyung Yu; Hyun Soo Cho; Iksoo Chang; Kangseok Lee; Nam Chul Ha

Macrolide-specific efflux pump MacAB-TolC has been identified in diverse Gram-negative bacteria including Escherichia coli. The inner membrane transporter MacB requires the outer membrane factor TolC and the periplasmic adaptor protein MacA to form a functional tripartite complex. In this study, we used a chimeric protein containing the tip region of the TolC α-barrel to investigate the role of the TolC α-barrel tip region with regard to its interaction with MacA. The chimeric protein formed a stable complex with MacA, and the complex formation was abolished by substitution at the functionally essential residues located at the MacA α-helical tip region. Electron microscopic study delineated that this complex was made by tip-to-tip interaction between the tip regions of the α-barrels of TolC and MacA, which correlated well with the TolC and MacA complex calculated by molecular dynamics. Taken together, our results demonstrate that the MacA hexamer interacts with TolC in a tip-to-tip manner, and implies the manner by which MacA induces opening of the TolC channel.


PLOS ONE | 2012

Membrane Fusion Proteins of Type I Secretion System and Tripartite Efflux Pumps Share a Binding Motif for TolC in Gram-Negative Bacteria

Minho Lee; So-Young Jun; Bo-Young Yoon; Saemee Song; Kangseok Lee; Nam-Chul Ha

The Hly translocator complex of Escherichia coli catalyzes type I secretion of the toxin hemolysin A (HlyA). In this complex, HlyB is an inner membrane ABC (ATP Binding Cassette)-type transporter, TolC is an outer membrane channel protein, and HlyD is a periplasmic adaptor anchored in the inner membrane that bridges HlyB to TolC. This tripartite organization is reminiscent of that of drug efflux systems such as AcrA-AcrB-TolC and MacA-MacB-TolC of E. coli. We have previously shown the crucial role of conserved residues located at the hairpin tip region of AcrA and MacA adaptors during assembly of their cognate systems. In this study, we investigated the role of the putative tip region of HlyD using HlyD mutants with single amino acid substitutions at the conserved positions. In vivo and in vitro data show that all mutations abolished HlyD binding to TolC and resulted in the absence of HlyA secretion. Together, our results suggest that, similarly to AcrA and MacA, HlyD interacts with TolC in a tip-to-tip manner. A general model in which these conserved interactions induce opening of TolC during drug efflux and type I secretion is discussed.


Biochemical and Biophysical Research Communications | 2010

The tip region of the MacA α-hairpin is important for the binding to TolC to the Escherichia coli MacAB-TolC pump

Yongbin Xu; Se-Hoon Sim; Saemee Song; Shunfu Piao; Hong-Man Kim; Xiao Ling Jin; Kangseok Lee; Nam-Chul Ha

The tripartite efflux pump MacAB-TolC found in gram-negative bacteria is involved in resistance to antibiotics. We previously reported the funnel-like hexameric structure of the adaptor protein MacA to be physiologically relevant. In this study, we investigated the role of the tip region of its alpha-hairpin, which forms a cogwheel structure in the funnel-like shape of the MacA hexamer. Mutational and biochemical analyses revealed that the conserved residues located at the tip region of the alpha-hairpin of MacA play an essential role in the binding of TolC. Our findings offer a molecular basis for understanding the drug resistance of pathogenic bacteria.


Journal of Microbiology | 2013

The α-barrel tip region of Escherichia coli TolC homologs of Vibrio vulnificus interacts with the MacA protein to form the functional macrolide-specific efflux pump MacAB-TolC

Minho Lee; Hyun-Lee Kim; Saemee Song; Minju Joo; Seunghwa Lee; Daeyoung Kim; Yoonsoo Hahn; Nam-Chul Ha; Kangseok Lee

TolC and its homologous family of proteins are outer membrane factors that are essential for exporting small molecules and toxins across the outer membrane in Gram-negative bacteria. Two open reading frames in the Vibrio vulnificus genome that encode proteins homologous to Escherichia coli TolC, designated TolCV1 and TolCV2, have 51.3% and 29.6% amino acid identity to TolC, respectively. In this study, we show that TolCV1 and TolCV2 functionally and physically interacted with the membrane fusion protein, MacA, a component of the macrolide-specific MacAB-TolC pump of E. coli. We further show that the conserved residues located at the aperture tip region of the α-hairpin of TolCV1 and TolCV2 played an essential role in the formation of the functional MacAB-TolC pump using site-directed mutational analyses. Our findings suggest that these outer membrane factors have conserved tip-to-tip interaction with the MacA membrane fusion protein for action of the drug efflux pump in Gramnegative bacteria.


PLOS ONE | 2014

Interaction Mediated by the Putative Tip Regions of MdsA and MdsC in the Formation of a Salmonella-Specific Tripartite Efflux Pump

Saemee Song; Soonhye Hwang; Seunghwa Lee; Nam-Chul Ha; Kangseok Lee

To survive in the presence of a wide range of toxic compounds, gram-negative bacteria expel such compounds via tripartite efflux pumps that span both the inner and outer membranes. The Salmonella-specific MdsAB pump consists of MdsB, a resistance-nodulation-division (RND)-type inner membrane transporter (IMT) that requires the membrane fusion protein (MFP) MdsA, and an outer membrane protein (OMP; MdsC or TolC) to form a tripartite efflux complex. In this study, we investigated the role of the putative tip regions of MdsA and its OMPs, MdsC and TolC, in the formation of a functional MdsAB-mediated efflux pump. Comparative analysis indicated that although sequence homologies of MdsA and MdsC with other MFPs and OMPs, respectively, are extremely low, key residues in the putative tip regions of these proteins are well conserved. Mutagenesis studies on these conserved sites demonstrated their importance for the physical and functional interactions required to form an MdsAB-mediated pump. Our studies suggest that, despite differences in the primary amino acid sequences and functions of various OMPs and MFPs, interactions mediated by the conserved tip regions of OMP and MFP are required for the formation of functional tripartite efflux pumps in gram-negative bacteria.


Journal of Microbiology | 2014

Interaction between the α-barrel tip of Vibrio vulnificus TolC homologs and AcrA implies the adapter bridging model.

Seunghwa Lee; Saemee Song; Minho Lee; Soonhye Hwang; Ji-Sun Kim; Nam-Chul Ha; Kangseok Lee

The AcrAB-TolC multidrug efflux pump confers resistance to Escherichia coli against many antibiotics and toxic compounds. The TolC protein is an outer membrane factor that participates in the formation of type I secretion systems. The genome of Vibrio vulnificus encodes two proteins homologous to the E. coli TolC, designated TolCV1 and TolCV2. Here, we show that both TolCV1 and TolCV2 partially complement the E. coli TolC function and physically interact with the membrane fusion protein AcrA, a component of the E. coli AcrAB-TolC efflux pump. Using site-directed mutational analyses and an in vivo cross-linking assay, we demonstrated that the α-barrel tip region of TolC homologs plays a critical role in the formation of functional AcrAB-TolC efflux pumps. Our findings suggest the adapter bridging model as a general assembly mechanism for tripartite drug efflux pumps in Gram-negative bacteria.


PLOS ONE | 2014

Modulation of RNase E Activity by Alternative RNA Binding Sites

Daeyoung Kim; Saemee Song; Minho Lee; Hayoung Go; Eunkyoung Shin; Ji-Hyun Yeom; Nam Chul Ha; Kangseok Lee; Yong-Hak Kim

Endoribonuclease E (RNase E) affects the composition and balance of the RNA population in Escherichia coli via degradation and processing of RNAs. In this study, we investigated the regulatory effects of an RNA binding site between amino acid residues 25 and 36 (24LYDLDIESPGHEQK37) of RNase E. Tandem mass spectrometry analysis of the N-terminal catalytic domain of RNase E (N-Rne) that was UV crosslinked with a 5′-32P-end-labeled, 13-nt oligoribonucleotide (p-BR13) containing the RNase E cleavage site of RNA I revealed that two amino acid residues, Y25 and Q36, were bound to the cytosine and adenine of BR13, respectively. Based on these results, the Y25A N-Rne mutant was constructed, and was found to be hypoactive in comparison to wild-type and hyperactive Q36R mutant proteins. Mass spectrometry analysis showed that Y25A and Q36R mutations abolished the RNA binding to the uncompetitive inhibition site of RNase E. The Y25A mutation increased the RNA binding to the multimer formation interface between amino acid residues 427 and 433 (427LIEEEALK433), whereas the Q36R mutation enhanced the RNA binding to the catalytic site of the enzyme (65HGFLPL*K71). Electrophoretic mobility shift assays showed that the stable RNA-protein complex formation was positively correlated with the extent of RNA binding to the catalytic site and ribonucleolytic activity of the N-Rne proteins. These mutations exerted similar effects on the ribonucleolytic activity of the full-length RNase E in vivo. Our findings indicate that RNase E has two alternative RNA binding sites for modulating RNA binding to the catalytic site and the formation of a functional catalytic unit.


PLOS ONE | 2018

Correction: Functional implications of hexameric assembly of RraA proteins from Vibrio vulnificus

Saemee Song; Seokho Hong; Jinyang Jang; Ji-Hyun Yeom; Nohra Park; Jaejin Lee; Yeri Lim; Jun-Yeong Jeon; Hyung-Kyoon Choi; Minho Lee; Nam-Chul Ha; Kangseok Lee

[This corrects the article DOI: 10.1371/journal.pone.0190064.].


Current Microbiology | 2014

Functional Analysis of TolC Homologs in Vibrio vulnificus

Seunghwa Lee; Saemee Song; Kangseok Lee

Collaboration


Dive into the Saemee Song's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nam-Chul Ha

Pusan National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Soonhye Hwang

Catholic University of Daegu

View shared research outputs
Top Co-Authors

Avatar

Yongbin Xu

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Bo-Young Yoon

Pusan National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

So-Young Jun

Pusan National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge