Namgyu Lee
Pohang University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Namgyu Lee.
Proteomics | 2014
Namgyu Lee; Dae-Kyum Kim; Eung-Sam Kim; Sung Jin Park; Jung-Hee Kwon; Jihye Shin; Seon-Min Park; Young Ho Moon; Hee Jung Wang; Yong Song Gho; Kwan Yong Choi
Sirtuins are NAD+‐dependent deacetylases that regulate a range of cellular processes. Although diverse functions of sirtuins have been proposed, those functions of SIRT6 and SIRT7 that are mediated by their interacting proteins remain elusive. In the present study, we identified SIRT6‐ and SIRT7‐interacting proteins, and compared their interactomes to investigate functional links. Our interactomes revealed 136 interacting proteins for SIRT6 and 233 for SIRT7 while confirming seven and 111 proteins identified previously for SIRT6 and SIRT7, respectively. Comparison of SIRT6 and SIRT7 interactomes under the same experimental conditions disclosed 111 shared proteins, implying related functional links. The interaction networks of interactomes indicated biological processes associated with DNA repair, chromatin assembly, and aging. Interactions of two highly acetylated proteins, nucleophosmin (NPM1) and nucleolin, with SIRT6 and SIRT7 were confirmed by co‐immunoprecipitation. NPM1 was found to be deacetylated by both SIRT6 and SIRT7. In senescent cells, the acetylation level of NPM1 was increased in conjunction with decreased levels of SIRT6 and SIRT7, suggesting that the acetylation of NPM1 could be regulated by SIRT6 and SIRT7 in the aging process. Our comparative interactomic study of SIRT6 and SIRT7 implies important functional links to aging by their associations with interacting proteins. All MS data have been deposited in the ProteomeXchange with identifiers PXD000159 and PXD000850 (http://proteomecentral.proteomexchange.org/dataset/PXD000159, http://proteomecentral.proteomexchange.org/dataset/PXD000850).
Molecules and Cells | 2016
Namgyu Lee; Dohoon Kim
The early landmark discoveries in cancer metabolism research have uncovered metabolic processes that support rapid proliferation, such as aerobic glycolysis (Warburg effect), glutaminolysis, and increased nucleotide biosynthesis. However, there are limitations to the effectiveness of specifically targeting the metabolic processes which support rapid proliferation. First, as other normal proliferative tissues also share similar metabolic features, they may also be affected by such treatments. Secondly, targeting proliferative metabolism may only target the highly proliferating “bulk tumor” cells and not the slower-growing, clinically relevant cancer stem cell subpopulations which may be required for an effective cure. An emerging body of research indicates that altered metabolism plays key roles in supporting proliferation-independent functions of cancer such as cell survival within the ischemic and acidic tumor microenvironment, immune system evasion, and maintenance of the cancer stem cell state. As these aspects of cancer cell metabolism are critical for tumor maintenance yet are less likely to be relevant in normal cells, they represent attractive targets for cancer therapy.
Scientific Reports | 2015
Sung Jin Park; Jaehoon Jeong; Young-Un Park; Kyung-Sun Park; Haeryun Lee; Namgyu Lee; Sung-Mo Kim; Keisuke Kuroda; Minh Dang Nguyen; Kozo Kaibuchi; Sang Ki Park
Disrupted-in-schizophrenia-1 (DISC1) has emerged as a convincing susceptibility gene for multiple mental disorders, but its mechanistic link to the pathogenesis of schizophrenia related psychiatric conditions is yet to be further understood. Here, we showed that DISC1 localizes to the outer surface of the endoplasmic reticulum (ER). EXOC1, a subunit of the exocyst complex, interacted with DISC1 and affected its recruitment to inositol-1,4,5-trisphosphate receptor 1 (IP3R1). Notably, knockdown of DISC1 and EXOC1 elicited an exaggerated ER calcium response upon stimulation of IP3R agonists. Similar abnormal ER calcium responses were observed in hippocampal neurons from DISC1-deficient mutant mice. Moreover, perturbation of ER calcium dynamics upon DISC1 knockdown was effectively reversed by treatment with antipsychotic drugs, such as clozapine and haloperidol. These results collectively indicate that DISC1 is a regulatory factor in ER calcium dynamics, linking a perturbed intracellular calcium signaling and schizophrenia pathogenesis.
PLOS ONE | 2013
Jung Hee Kwon; Namgyu Lee; Jinyoung Park; Yun Suk Yu; Jin Pyo Kim; Ji Hye Shin; Dong Sik Kim; Jae-Won Joh; Dae Shick Kim; Kwan Yong Choi; Koo Jeong Kang; Gun-Do Kim; Young Ho Moon; Hee Jung Wang
Background The effectiveness of molecular targeted agents is modest in hepatocellular carcinoma (HCC). Efficacy of molecular targeted therapies has been better in cancer patients with high expression of actionable molecules defined as cognate target molecules. However, patient stratification based on the actionable molecules dictating the effectiveness of targeted drugs has remained understudied in HCC. Experimental Design & Results Paired tumor and non-tumoral tissues derived from a total of 130 HCC patients were studied. Real-time RT-PCR was used to analyze the mRNA expression of actionable molecules in the tissues. mRNA levels of EGFR, VEGFR2, PDGFRβ, FGFR1, and mTOR were up-regulated in tumors compared to non-tumors in 35.4, 42.3, 61.5, 24.6, and 50.0% of patients, respectively. Up-regulation of EGFR was observed at early stage and tended to gradually decrease toward late stages (BCLC stage A: 41.9%; B: 30.8%; C: 17.6%). Frequency of VEGFR2 expression in tumors at stage C was lower than that in the other stages (BCLC stage A: 45.9%; B: 41.0%; C: 29.4%). PDGFRβ and mTOR were observed to be up-regulated in more than 50% of tumors in all the stages whereas FGFR1 was up-regulated in only about 20% of HCC irrespective of stages. A cluster analysis of actionable gene expression revealed that HCC can be categorized into different subtypes that predict the effectiveness of molecular targeted agents and combination therapies in clinical trials. Analysis of in vitro sensitivity to sorafenib demonstrated that HCC cells with up-regulation of PDGFRβ and c-Raf mRNA are more susceptible to sorafenib treatment in a dose and time-dependent manner than cells with low expression of the genes. Conclusions mRNA expression analysis of actionable molecules could provide the rationale for new companion diagnostics-based therapeutic strategies in the treatment of HCC.
Oncotarget | 2015
Namgyu Lee; Jung-Hee Kwon; Young Bae Kim; Seong-Hoon Kim; Sung Jin Park; Weiguang Xu; Hoe-Yune Jung; Kyong-Tai Kim; Hee Jung Wang; Kwan Yong Choi
We identified the specific role of vaccinia-related kinase 1 (VRK1) in the progression of hepatocellular carcinoma (HCC) and evaluated its therapeutic and prognostic potential. VRK1 levels were significantly higher in HCC cell lines than a normal hepatic cell line, and were higher in HCC than non-tumor tissue. VRK1 knockdown inhibited the proliferation of SK-Hep1, SH-J1 and Hep3B cells; moreover, depletion of VRK1 suppressed HCC tumor growth in vivo. We also showed that VRK1 knockdown increased the number of G1 arrested cells by decreasing cyclin D1 and p-Rb while upregulating p21 and p27, and that VRK1 depletion downregulated phosphorylation of CREB, a transcription factor regulating CCND1. Additionally, we found that luteolin, a VRK1 inhibitor, suppressed HCC growth in vitro and in vivo, and that the aberrant VRK1 expression correlated with poor prognostic features of HCC. High levels of VRK1 were associated with shorter overall and disease-free survival and higher recurrence rates. Taken together, our findings suggest VRK1 may act as a tumor promoter by controlling the level of cell cycle regulators associated with G1/S transition and could potentially serve as a therapeutic target and/or prognostic biomarker for HCC.
PLOS ONE | 2016
Namgyu Lee; Hye Guk Ryu; Jung-Hee Kwon; Dae-Kyum Kim; Sae Rom Kim; Hee Jung Wang; Kyong-Tai Kim; Kwan Yong Choi
The role of Sirtuin 6 (SIRT6) as a tumor suppressor or oncogene in liver cancer remains controversial. Thus, we identified the specific role of SIRT6 in the progression of hepatocellular carcinoma (HCC). SIRT6 expression was significantly higher in HCC cell lines and HCC tissues from 138 patients than in an immortalized hepatocyte cell line, THLE-2 and non-tumor tissues, respectively. SIRT6 knockdown by shRNA suppressed the growth of HCC cells and inhibited HCC tumor growth in vivo. In addition, SIRT6 silencing significantly prevented the growth of HCC cell lines by inducing cellular senescence in the p16/Rb- and p53/p21-pathway independent manners. Microarray analysis revealed that the expression of genes involved in nucleosome assembly was apparently altered in SIRT6-depleted Hep3B cells. SIRT6 knockdown promoted G2/M phase arrest and downregulation of genes encoding histone variants associated with nucleosome assembly, which could be attributed to DNA damage. Taken together, our findings suggest that SIRT6 acts as a tumor promoter by preventing DNA damage and cellular senescence, indicating that SIRT6 represents a potential therapeutic target for the treatment of HCC.
Scientific Reports | 2017
Hoe Yune Jung; Dongyeop Lee; Hye Guk Ryu; Bo Hwa Choi; Younghoon Go; Namgyu Lee; Dohyun Lee; Heehwa G. Son; Jongsu Jeon; Seong Hoon Kim; Jong Hyuk Yoon; Seon Min Park; Seung-Jae Lee; In Kyu Lee; Kwan Yong Choi; Sung Ho Ryu; Kazunari Nohara; Seung Hee Yoo; Zheng Chen; Kyong-Tai Kim
Robust mitochondrial respiration provides energy to support physical performance and physiological well-being, whereas mitochondrial malfunction is associated with various pathologies and reduced longevity. In the current study, we tested whether myricetin, a natural flavonol with diverse biological activities, may impact mitochondrial function and longevity. The mice were orally administered myricetin (50 mg/kg/day) for 3 weeks. Myricetin significantly potentiated aerobic capacity in mice, as evidenced by their increased running time and distance. The elevated mitochondrial function was associated with induction of genes for oxidative phosphorylation and mitochondrial biogenesis in metabolically active tissues. Importantly, myricetin treatment led to decreased PGC-1α acetylation through SIRT1 activation. Furthermore, myricetin significantly improved the healthspan and lifespan of wild-type, but not Sir-2.1-deficient, C. elegans. These results demonstrate that myricetin enhances mitochondrial activity, possibly by activating PGC-1α and SIRT1, to improve physical endurance, strongly suggesting myricetin as a mitochondria-activating agent.
Scientific Reports | 2016
Namgyu Lee; Sung Jin Park; Ghazal Haddad; Dae-Kyum Kim; Seon-Min Park; Sang Ki Park; Kwan Yong Choi
RE-1 silencing transcription factor (REST) is a transcriptional repressor that regulates gene expression by binding to repressor element 1. However, despite its critical function in physiology, little is known about its interaction proteins. Here we identified 204 REST-interacting proteins using affinity purification and mass spectrometry. The interactome included proteins associated with mRNA processing/splicing, chromatin organization, and transcription. The interactions of these REST-interacting proteins, which included TRIM28, were confirmed by co-immunoprecipitation and immunocytochemistry, respectively. Gene Ontology (GO) analysis revealed that neuronal differentiation-related GO terms were enriched among target genes that were co-regulated by REST and TRIM28, while the level of CTNND2 was increased by the knockdown of REST and TRIM28. Consistently, the level of CTNND2 increased while those of REST and TRIM28 decreased during neuronal differentiation in the primary neurons, suggesting that CTNND2 expression may be co-regulated by both. Furthermore, neurite outgrowth was increased by depletion of REST or TRIM28, implying that reduction of both REST and TRIM28 could promote neuronal differentiation via induction of CTNND2 expression. In conclusion, our study of REST reveals novel interacting proteins which could be a valuable resource for investigating unidentified functions of REST and also suggested functional links between REST and TRIM28 during neuronal development.
International Journal of Cancer | 2013
Jung-Hee Kwon; Ji Hye Shin; Eung-Sam Kim; Namgyu Lee; Jinyoung Park; Bonik Samuel Koo; Sun Mi Hong; Chang Wook Park; Kwan Yong Choi
REST is a neuronal gene silencing factor ubiquitously expressed in non‐neuronal tissues. REST is additionally believed to serve as a tumor suppressor in non‐neuronal cancers. Conversely, recent findings on REST‐dependent tumorigenesis in non‐neuronal cells consistently suggest a potential role of REST as a tumor promoter. Here, we have uncovered for the first time the mechanism by which REST contributes to cancer cell survival in non‐neuronal cancers. We observed abundant expression of REST in various types of non‐neuronal cancer cells compared to normal tissues. The delicate roles of REST were further evaluated in HCT116 and HeLa, non‐neuronal cancer cell lines expressing REST. REST silencing resulted in decreased cell survival and activation of the DNA damage response (DDR) through a decrease in the level of TRF2, a telomere‐binding protein. These responses were correlated with reduced colony formation ability and accelerated telomere shortening in cancer cells upon the stable knockdown of REST. Interestingly, REST was down‐regulated under oxidative stress conditions via ubiquitin proteasome system, suggesting that sustainability of REST expression is critical to determine cell survival during oxidative stress in a tumor microenvironment. Our results collectively indicate that REST‐dependent TRF2 expression renders cancer cells resistant to DNA damage during oxidative stress, and mechanisms to overcome oxidative stress, such as high levels of REST or the stress‐resistant REST mutants found in specific human cancers, may account for REST‐dependent tumorigenesis.
Nature Communications | 2018
Chuangqi Wang; Hee June Choi; Sung-Jin Kim; Aesha Desai; Namgyu Lee; Dohoon Kim; Yong Ho Bae; Kwonmoo Lee
Cell protrusion is morphodynamically heterogeneous at the subcellular level. However, the mechanism of cell protrusion has been understood based on the ensemble average of actin regulator dynamics. Here, we establish a computational framework called HACKS (deconvolution of heterogeneous activity in coordination of cytoskeleton at the subcellular level) to deconvolve the subcellular heterogeneity of lamellipodial protrusion from live cell imaging. HACKS identifies distinct subcellular protrusion phenotypes based on machine-learning algorithms and reveals their underlying actin regulator dynamics at the leading edge. Using our method, we discover “accelerating protrusion”, which is driven by the temporally ordered coordination of Arp2/3 and VASP activities. We validate our finding by pharmacological perturbations and further identify the fine regulation of Arp2/3 and VASP recruitment associated with accelerating protrusion. Our study suggests HACKS can identify specific subcellular protrusion phenotypes susceptible to pharmacological perturbation and reveal how actin regulator dynamics are changed by the perturbation.Cell protrusion dynamics are heterogeneous at the subcellular level, but current analyses operate at the cellular or ensemble level. Here the authors develop a computational framework to quantify subcellular protrusion phenotypes and reveal the underlying actin regulator dynamics at the leading edge.