Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nan A. Rosenbloom is active.

Publication


Featured researches published by Nan A. Rosenbloom.


Journal of Geophysical Research | 1994

Hillslope and channel evolution in a marine terraced landscape, Santa Cruz, California

Nan A. Rosenbloom; Robert S. Anderson

A flight of marine terraces along the central California coastline provides a unique setting for the study of topographic evolution. Wavecut platforms mantled by 2–6 m of marine terrace cover deposits are separated by 10–50 m tall decaying sea cliffs. Paleocliff edges become more rounded with age, yet the details of the profiles and frequent bedrock exposure on the upper slopes imply weathering-limited transport. Five bedrock stream channels etched through the marine terrace sequence display one to three distinct convexities in their longitudinal profiles. Detailed hand level surveys of the hillslopes and of the stream channel longitudinal profiles constrain hillslope evolution and channel incision components of a numerical model of landscape evolution. We account for regolith production as a function of regolith depth. In accord with the field observation that hillslope processes are presently dominated by the activities of burrowing rodents, the transport process is taken to be diffusive. Stream incision is assumed to be controlled by stream power, for which we use the surrogate of local drainage area-slope product. Best fits of the numerical model to field data imply: hillslope diffusivity is 10 m2 kyr−1; regolith production rate on bare bedrock is 0.3 m kyr−1, and falls off rapidly with regolith cover, and the constant controlling the efficiency of stream incision is 5 to 7×10−7m−1 kyr1.


Journal of Climate | 2013

Last Millennium Climate and Its Variability in CCSM4

Laura Landrum; Bette L. Otto-Bliesner; Eugene R. Wahl; Andrew Conley; Peter J. Lawrence; Nan A. Rosenbloom; Haiyan Teng

AbstractAn overview of a simulation referred to as the “Last Millennium” (LM) simulation of the Community Climate System Model, version 4 (CCSM4), is presented. The CCSM4 LM simulation reproduces many large-scale climate patterns suggested by historical and proxy-data records, with Northern Hemisphere (NH) and Southern Hemisphere (SH) surface temperatures cooling to the early 1800s Common Era by ~0.5°C (NH) and ~0.3°C (SH), followed by warming to the present. High latitudes of both hemispheres show polar amplification of the cooling from the Medieval Climate Anomaly (MCA) to the Little Ice Age (LIA) associated with sea ice increases. The LM simulation does not reproduce La Nina–like cooling in the eastern Pacific Ocean during the MCA relative to the LIA, as has been suggested by proxy reconstructions. Still, dry medieval conditions over the southwestern and central United States are simulated in agreement with proxy indicators for these regions. Strong global cooling is associated with large volcanic erup...


Nature Geoscience | 2010

Influence of Bering Strait flow and North Atlantic circulation on glacial sea-level changes

Aixue Hu; Gerald A. Meehl; Bette L. Otto-Bliesner; Claire Waelbroeck; Weiqing Han; Marie-France Loutre; Kurt Lambeck; Jerry X. Mitrovica; Nan A. Rosenbloom

Sea-level fluctuations of about 20-30m occurred throughout the last glacial period. These fluctuations seem to have been derived primarily from changes in the volume of Northern Hemisphere ice sheets(1-3), and cannot be attributed solely to ice melt caused by varying solar radiation(4). Here we use a fully coupled climate model to show that the transport of relatively fresh Pacific water into the North Atlantic Ocean was limited when lower sea level restricted or closed the Bering Strait, resulting in saltier North Atlantic surface waters. This invigorated deep convection in the North Atlantic Ocean, strengthening meridional overturning circulation and northward heat transport in our model, which consequently promoted melting of ice sheets in North America and Europe. Our simulations show that the associated sea-level rise led to a reopening of the Bering Strait; the flux of relatively fresh water into the North Atlantic Ocean muted meridional overturning circulation and led to cooling and ice-sheet advance in the Northern Hemisphere. We conclude that the repetition of this cycle could produce the sea-level changes that have been observed throughout the last glacial cycle.


Bulletin of the American Meteorological Society | 2016

Climate Variability and Change since 850 CE: An Ensemble Approach with the Community Earth System Model

Bette L. Otto-Bliesner; Esther C. Brady; John T. Fasullo; Alexandra Jahn; Laura Landrum; Samantha Stevenson; Nan A. Rosenbloom; Andrew Mai; Gary Strand

AbstractThe climate of the past millennium provides a baseline for understanding the background of natural climate variability upon which current anthropogenic changes are superimposed. As this period also contains high data density from proxy sources (e.g., ice cores, stalagmites, corals, tree rings, and sediments), it provides a unique opportunity for understanding both global and regional-scale climate responses to natural forcing. Toward that end, an ensemble of simulations with the Community Earth System Model (CESM) for the period 850–2005 (the CESM Last Millennium Ensemble, or CESM-LME) is now available to the community. This ensemble includes simulations forced with the transient evolution of solar intensity, volcanic emissions, greenhouse gases, aerosols, land-use conditions, and orbital parameters, both together and individually. The CESM-LME thus allows for evaluation of the relative contributions of external forcing and internal variability to changes evident in the paleoclimate data record, a...


Scientific Reports | 2013

Sea Surface Temperature of the mid-Piacenzian Ocean: A Data-Model Comparison

Harry J. Dowsett; Kevin M. Foley; Danielle K. Stoll; Mark A. Chandler; Linda E. Sohl; Mats Bentsen; Bette L. Otto-Bliesner; Fran J. Bragg; Wing-Le Chan; Camille Contoux; Aisling M. Dolan; Alan M. Haywood; Jeff Jonas; Anne Jost; Youichi Kamae; Gerrit Lohmann; Daniel J. Lunt; Kerim H. Nisancioglu; Ayako Abe-Ouchi; Gilles Ramstein; Christina R. Riesselman; Marci M. Robinson; Nan A. Rosenbloom; Ulrich Salzmann; Christian Stepanek; Stephanie L. Strother; Hiroaki Ueda; Qing Yan; Zhongshi Zhang

The mid-Piacenzian climate represents the most geologically recent interval of long-term average warmth relative to the last million years, and shares similarities with the climate projected for the end of the 21st century. As such, it represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. Here, we present the first systematic comparison of Pliocene sea surface temperature (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) with the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional and dynamic situations where there is discord between the palaeoenvironmental reconstruction and the climate model simulations. These differences have led to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction.


Journal of Climate | 2013

Sensitivity to glacial forcing in the CCSM4

Esther C. Brady; Bette L. Otto-Bliesner; Jennifer E. Kay; Nan A. Rosenbloom

AbstractResults are presented from the Community Climate System Model, version 4 (CCSM4), simulation of the Last Glacial Maximum (LGM) from phase 5 of the Coupled Model Intercomparison Project (CMIP5) at the standard 1° resolution, the same resolution as the majority of the CCSM4 CMIP5 long-term simulations for the historical and future projection scenarios. The forcings and boundary conditions for this simulation follow the protocols of the Paleoclimate Modeling Intercomparison Project, version 3 (PMIP3). Two additional CCSM4 CO2 sensitivity simulations, in which the concentrations are abruptly changed at the start of the simulation to the low 185 ppm LGM concentrations (LGMCO2) and to a quadrupling of the preindustrial concentration (4×CO2), are also analyzed. For the full LGM simulation, the estimated equilibrium cooling of the global mean annual surface temperature is 5.5°C with an estimated radiative forcing of −6.2 W m−2. The radiative forcing includes the effects of the reduced LGM greenhouse gases...


Philosophical Transactions of the Royal Society A | 2013

How warm was the last interglacial? New model-data comparisons.

Bette L. Otto-Bliesner; Nan A. Rosenbloom; Emma J. Stone; Nicholas P. McKay; Daniel J. Lunt; Esther C. Brady; Jonathan T. Overpeck

A Community Climate System Model, Version 3 (CCSM3) simulation for 125 ka during the Last Interglacial (LIG) is compared to two recent proxy reconstructions to evaluate surface temperature changes from modern times. The dominant forcing change from modern, the orbital forcing, modified the incoming solar insolation at the top of the atmosphere, resulting in large positive anomalies in boreal summer. Greenhouse gas concentrations are similar to those of the pre-industrial (PI) Holocene. CCSM3 simulates an enhanced seasonal cycle over the Northern Hemisphere continents with warming most developed during boreal summer. In addition, year-round warming over the North Atlantic is associated with a seasonal memory of sea ice retreat in CCSM3, which extends the effects of positive summer insolation anomalies on the high-latitude oceans to winter months. The simulated Arctic terrestrial annual warming, though, is much less than the observational evidence, suggesting either missing feedbacks in the simulation and/or interpretation of the proxies. Over Antarctica, CCSM3 cannot reproduce the large LIG warming recorded by the Antarctic ice cores, even with simulations designed to consider observed evidence of early LIG warmth in Southern Ocean and Antarctica records and the possible disintegration of the West Antarctic Ice Sheet. Comparisons with a HadCM3 simulation indicate that sea ice is important for understanding model polar responses. Overall, the models simulate little global annual surface temperature change, while the proxy reconstructions suggest a global annual warming at LIG (as compared to the PI Holocene) of approximately 1°C, though with possible spatial sampling biases. The CCSM3 SRES B1 (low scenario) future projections suggest high-latitude warmth similar to that reconstructed for the LIG may be exceeded before the end of this century.


Global Biogeochemical Cycles | 2001

Geomorphic evolution of soil texture and organic matter in eroding landscapes

Nan A. Rosenbloom; Scott C. Doney; David S. Schimel

Geomorphic erosion on hillslopes creates a distribution of soil properties within the landscape that influences ecosystem, erosional, and hydrological processes. These soil properties typically reflect topography and define a template for plant productivity and consequent soil carbon accumulation. Erosion also redistributes soil carbon and, by burying or excavating carbon, changes turnover time and may figure prominently in the global carbon budget [Stallard, 1998]. In this paper, we present the Changing Relief and Evolving Ecosystems Project (CREEP), a theoretical, process-response model that focuses on the redistribution of soil texture and soil carbon along a hillslope in response to geomorphic transport processes. The CREEP model simulates long-term ecological and geomorphic landscape evolution by simulating general soil, vegetation, and hillslope transport relationships. In particular, the model allows for the removal and downslope transport of soil carbon, as well as for the burial and decomposition of carbon in the accumulation zone. CREEP model results suggest that sandy soils are more likely to differentiate downslope with respect to soil texture than are more clay-rich soils and that this redistribution will lead to disproportionately broad areas of predominantly coarse-grained particles on upper slopes. Gridded biogeochemical models, which may otherwise overlook landscape heterogeneity, may use CREEP estimates of the areal distribution of soil texture as a basis for parametrically capturing trace gas fluxes nonlinearly related to soil texture.


Geophysical Research Letters | 2015

Impact of the dynamical core on the direct simulation of tropical cyclones in a high-resolution global model

Kevin A. Reed; Julio T. Bacmeister; Nan A. Rosenbloom; Michael F. Wehner; Susan C. Bates; Peter H. Lauritzen; John E. Truesdale; Cecile Hannay

This paper examines the impact of the dynamical core on the simulation of tropical cyclone (TC) frequency, distribution, and intensity. The dynamical core, the central fluid flow component of any general circulation model (GCM), is often overlooked in the analysis of a models ability to simulate TCs compared to the impact of more commonly documented components (e.g., physical parameterizations). The Community Atmosphere Model version 5 is configured with multiple dynamics packages. This analysis demonstrates that the dynamical core has a significant impact on storm intensity and frequency, even in the presence of similar large-scale environments. In particular, the spectral element core produces stronger TCs and more hurricanes than the finite-volume core using very similar parameterization packages despite the latter having a slightly more favorable TC environment. The results suggest that more detailed investigations into the impact of the GCM dynamical core on TC climatology are needed to fully understand these uncertainties.


Geology | 2016

The cause of Late Cretaceous cooling: A multimodel-proxy comparison

Clay R. Tabor; Christopher J. Poulsen; Daniel J. Lunt; Nan A. Rosenbloom; Bette L. Otto-Bliesner; Paul Markwick; Esther C. Brady; Alexander Farnsworth; Ran Feng

Proxy temperature reconstructions indicate a dramatic cooling from the Cenomanian to Maastrichtian. However, the spatial extent of and mechanisms responsible for this cooling remain uncertain, given simultaneous climatic influences of tectonic and greenhouse gas changes through the Late Cretaceous. Here we compare several climate simulations of the Cretaceous using two different Earth system models with a compilation of sea-surface temperature proxies from the Cenomanian and Maastrichtian to better understand Late Cretaceous climate change. In general, surface temperature responses are consistent between models, lending confidence to our findings. Our comparison of proxies and models confirms that Late Cretaceous cooling was a widespread phenomenon and likely due to a reduction in greenhouse gas concentrations in excess of a halving of CO 2 , not changes in paleogeography.

Collaboration


Dive into the Nan A. Rosenbloom's collaboration.

Top Co-Authors

Avatar

Bette L. Otto-Bliesner

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Timothy G. F. Kittel

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

David Schimel

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

H.H. Fisher

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Mark A. Chandler

Goddard Institute for Space Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge