Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nan Chi Wan is active.

Publication


Featured researches published by Nan Chi Wan.


Journal of Medicinal Chemistry | 2008

The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer

Adrian Folkes; Khatereh Ahmadi; Wendy K. Alderton; Sonia Alix; Stewart Baker; Gary Box; Irina Chuckowree; Paul A. Clarke; Paul Depledge; Suzanne A. Eccles; Lori S. Friedman; Angela Hayes; Timothy C. Hancox; Arumugam Kugendradas; Letitia Lensun; Pauline Moore; Alan G. Olivero; Jodie Pang; Sonal Patel; Giles Pergl-Wilson; Florence I. Raynaud; Anthony Robson; Nahid Saghir; Laurent Salphati; Sukhjit Sohal; Mark Ultsch; Melanie Valenti; Heidi J.A. Wallweber; Nan Chi Wan; Christian Wiesmann

Phosphatidylinositol-3-kinase (PI3K) is an important target in cancer due to the deregulation of the PI3K/ Akt signaling pathway in a wide variety of tumors. A series of thieno[3,2-d]pyrimidine derivatives were prepared and evaluated as inhibitors of PI3 kinase p110alpha. The synthesis, biological activity, and further profiling of these compounds are described. This work resulted in the discovery of 17, GDC-0941, which is a potent, selective, orally bioavailable inhibitor of PI3K and is currently being evaluated in human clinical trials for the treatment of cancer.


Molecular Cancer Therapeutics | 2009

Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941

Florence I. Raynaud; Suzanne A. Eccles; Sonal Patel; Sonia Alix; Gary Box; Irina Chuckowree; Adrian Folkes; Sharon Gowan; Alexis de Haven Brandon; Francesca Di Stefano; Angela Hayes; Alan T. Henley; Letitia Lensun; Giles Pergl-Wilson; Anthony Robson; Nahid Saghir; Alexander Zhyvoloup; Edward McDonald; Peter Sheldrake; Stephen J. Shuttleworth; Melanie Valenti; Nan Chi Wan; Paul A. Clarke; Paul Workman

The phosphatidylinositide 3-kinase pathway is frequently deregulated in human cancers and inhibitors offer considerable therapeutic potential. We previously described the promising tricyclic pyridofuropyrimidine lead and chemical tool compound PI-103. We now report the properties of the pharmaceutically optimized bicyclic thienopyrimidine derivatives PI-540 and PI-620 and the resulting clinical development candidate GDC-0941. All four compounds inhibited phosphatidylinositide 3-kinase p110α with IC50 ≤ 10 nmol/L. Despite some differences in isoform selectivity, these agents exhibited similar in vitro antiproliferative properties to PI-103 in a panel of human cancer cell lines, with submicromolar potency in PTEN-negative U87MG human glioblastoma cells and comparable phosphatidylinositide 3-kinase pathway modulation. PI-540 and PI-620 exhibited improvements in solubility and metabolism with high tissue distribution in mice. Both compounds gave improved antitumor efficacy over PI-103, following i.p. dosing in U87MG glioblastoma tumor xenografts in athymic mice, with treated/control values of 34% (66% inhibition) and 27% (73% inhibition) for PI-540 (50 mg/kg b.i.d.) and PI-620 (25 mg/kg b.i.d.), respectively. GDC-0941 showed comparable in vitro antitumor activity to PI-103, PI-540, and PI-620 and exhibited 78% oral bioavailability in mice, with tumor exposure above 50% antiproliferative concentrations for >8 hours following 150 mg/kg p.o. and sustained phosphatidylinositide 3-kinase pathway inhibition. These properties led to excellent dose-dependent oral antitumor activity, with daily p.o. dosing at 150 mg/kg achieving 98% and 80% growth inhibition of U87MG glioblastoma and IGROV-1 ovarian cancer xenografts, respectively. Together, these data support the development of GDC-0941 as a potent, orally bioavailable inhibitor of phosphatidylinositide 3-kinase. GDC-0941 has recently entered phase I clinical trials. [Mol Cancer Ther 2009;8(7):1725–38] [Mol Cancer Ther 2009;8(7):1725–38]


Journal of Medicinal Chemistry | 2011

Discovery of a Potent, Selective, and Orally Available Class I Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Kinase Inhibitor (GDC-0980) for the Treatment of Cancer.

Daniel P. Sutherlin; Linda Bao; Megan Berry; Georgette Castanedo; Irina Chuckowree; Jenna Dotson; Adrian Dzh Folks; Lori S. Friedman; Richard Goldsmith; Janet Gunzner; Timothy P. Heffron; John Lesnick; Cristina Lewis; Simon Mathieu; Jeremy Murray; Jim Nonomiya; Jodie Pang; Niel Pegg; Wei Wei Prior; Lionel Rouge; Laurent Salphati; Deepak Sampath; Qingping Tian; Vickie Tsui; Nan Chi Wan; Shumei Wang; Binqing Wei; Christian Wiesmann; Ping Wu; Bing-Yan Zhu

The discovery of 2 (GDC-0980), a class I PI3K and mTOR kinase inhibitor for oncology indications, is described. mTOR inhibition was added to the class I PI3K inhibitor 1 (GDC-0941) scaffold primarily through the substitution of the indazole in 1 for a 2-aminopyrimidine. This substitution also increased the microsomal stability and the free fraction of compounds as evidenced through a pairwise comparison of molecules that were otherwise identical. Highlighted in detail are analogues of an advanced compound 4 that were designed to improve solubility, resulting in 2. This compound, is potent across PI3K class I isoforms with IC(50)s of 5, 27, 7, and 14 nM for PI3Kα, β, δ, and γ, respectively, inhibits mTOR with a K(i) of 17 nM yet is highly selective versus a large panel of kinases including others in the PIKK family. On the basis of the cell potency, low clearance in mouse, and high free fraction, 2 demonstrated significant efficacy in mouse xenografts when dosed as low as 1 mg/kg orally and is currently in phase I clinical trials for cancer.


Journal of Medicinal Chemistry | 2010

Discovery of (Thienopyrimidin-2-yl)aminopyrimidines as Potent, Selective, and Orally Available Pan-PI3-Kinase and Dual Pan-PI3-Kinase/mTOR Inhibitors for the Treatment of Cancer.

Daniel P. Sutherlin; Deepak Sampath; Megan Berry; Georgette Castanedo; Zhigang Chang; Irina Chuckowree; Jenna Dotson; Adrian Folkes; Lori Friedman; Richard Goldsmith; Tim Heffron; Leslie Lee; John D. Lesnick; Cristina Lewis; Simon Mathieu; Jim Nonomiya; Alan G. Olivero; Jodie Pang; Wei Wei Prior; Laurent Salphati; Steve Sideris; Qingping Tian; Vickie Tsui; Nan Chi Wan; Shumei Wang; Christian Wiesmann; Susan Wong; Bing-Yan Zhu

The PI3K/AKT/mTOR pathway has been shown to play an important role in cancer. Starting with compounds 1 and 2 (GDC-0941) as templates, (thienopyrimidin-2-yl)aminopyrimidines were discovered as potent inhibitors of PI3K or both PI3K and mTOR. Structural information derived from PI3K gamma-ligand cocrystal structures of 1 and 2 were used to design inhibitors that maintained potency for PI3K yet improved metabolic stability and oral bioavailability relative to 1. The addition of a single methyl group to the optimized 5 resulted in 21, which had significantly reduced potency for mTOR. The lead compounds 5 (GNE-493) and 21 (GNE-490) have good pharmacokinetic (PK) parameters, are highly selective, demonstrate knock down of pathway markers in vivo, and are efficacious in xenograft models where the PI3K pathway is deregulated. Both compounds were compared in a PI3K alpha mutated MCF7.1 xenograft model and were found to have equivalent efficacy when normalized for exposure.


Bioorganic & Medicinal Chemistry Letters | 2010

Identification of GNE-477, a potent and efficacious dual PI3K/mTOR inhibitor

Timothy P. Heffron; Megan Berry; Georgette Castanedo; Christine Chang; Irina Chuckowree; Jennafer Dotson; Adrian Folkes; Janet Gunzner; John Lesnick; Cristina Lewis; Simon Mathieu; Jim Nonomiya; Alan G. Olivero; Jodie Pang; David Peterson; Laurent Salphati; Deepak Sampath; Steve Sideris; Daniel P. Sutherlin; Vickie Tsui; Nan Chi Wan; Shumei Wang; Susan Wong; Bing-Yan Zhu

Efforts to identify potent small molecule inhibitors of PI3 kinase and mTOR led to the discovery of the exceptionally potent 6-aryl morpholino thienopyrimidine 6. In an effort to reduce the melting point in analogs of 6, the thienopyrimidine was modified by the addition of a methyl group to disrupt planarity. This modification resulted in a general improvement in in vivo clearance. This discovery led to the identification of GNE-477 (8), a potent and efficacious dual PI3K/mTOR inhibitor.


Journal of Medicinal Chemistry | 2011

Rational Design of Phosphoinositide 3-Kinase α Inhibitors That Exhibit Selectivity over the Phosphoinositide 3-Kinase β Isoform

Timothy P. Heffron; Binqing Wei; Alan G. Olivero; Steven Staben; Vickie Tsui; Steven Do; Jennafer Dotson; Adrian Folkes; Paul Goldsmith; Richard Goldsmith; Janet Gunzner; John D. Lesnick; Cristina Lewis; Simon Mathieu; Jim Nonomiya; Stephen J. Shuttleworth; Daniel P. Sutherlin; Nan Chi Wan; Shumei Wang; Christian Wiesmann; Bing-Yan Zhu

Of the four class I phosphoinositide 3-kinase (PI3K) isoforms, PI3Kα has justly received the most attention for its potential in cancer therapy. Herein we report our successful approaches to achieve PI3Kα vs PI3Kβ selectivity for two chemical series. In the thienopyrimidine series of inhibitors, we propose that select ligands achieve selectivity derived from a hydrogen bonding interaction with Arg770 of PI3Kα that is not attained with the corresponding Lys777 of PI3Kβ. In the benzoxepin series of inhibitors, the selectivity observed can be rationalized by the difference in electrostatic potential between the two isoforms in a given region rather than any specific interaction.


Bioorganic & Medicinal Chemistry Letters | 2010

Structure-based optimization of pyrazolo-pyrimidine and -pyridine inhibitors of PI3-kinase.

Steven Staben; Timothy P. Heffron; Daniel P. Sutherlin; Seema R. Bhat; Georgette Castanedo; Irina Chuckowree; Jenna Dotson; Adrian Folkes; Lori S. Friedman; Leslie Lee; John Lesnick; Cristina Lewis; Jeremy Murray; Jim Nonomiya; Alan G. Olivero; Emile Plise; Jodie Pang; Wei Wei Prior; Laurent Salphati; Lionel Rouge; Deepak Sampath; Vickie Tsui; Nan Chi Wan; Shumei Wang; Christian Weismann; Ping Wu; Bing-Yan Zhu

Starting from HTS hit 1a, X-ray co-crystallization and molecular modeling were used to design potent and selective inhibitors of PI3-kinase. Bioavailablity in this series was improved through careful modulation of physicochemical properties. Compound 12 displayed in vivo knockdown of PI3K pharmacodynamic markers such as pAKT, pPRAS40, and pS6RP in a PC3 prostate cancer xenograft model.


Archive | 2006

Pyrimidine derivatives for the treatment of cancer

Edward McDonald; Jonathan M. Large; Adrian J. Folkes; Stephen J. Shuttleworth; Nan Chi Wan


Journal of Medicinal Chemistry | 2004

Design and synthesis of new templates derived from pyrrolopyrimidine as selective multidrug-resistance-associated protein inhibitors in multidrug resistance.

Shouming Wang; Nan Chi Wan; John R. Harrison; Warren Miller; Irina Chuckowree; Sukhjit Sohal; Timothy Colin Hancox; Stewart Baker; Adrian Folkes; Francis Wilson; Deanne Thompson; Simon Cocks; Hayley Farmer; Anthony Boyce; Caroline Freathy; Jan Broadbridge; John W. Scott; Paul Depledge; Richard Faint; Prakash Mistry; Peter Charlton


Archive | 2005

1-cyclyl-3-substituted- -benzenes and -azines as inhibitors of phosphatidylinositol 3-kinase

Stephen J. Shuttleworth; Adrian Folkes; Nan Chi Wan; Timothy Colin Hancox; Stewart J. Baker

Collaboration


Dive into the Nan Chi Wan's collaboration.

Researchain Logo
Decentralizing Knowledge