Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven Staben is active.

Publication


Featured researches published by Steven Staben.


Journal of Medicinal Chemistry | 2013

Discovery of 2-{3-[2-(1-Isopropyl-3-methyl-1H-1,2–4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl]-1H-pyrazol-1-yl}-2-methylpropanamide (GDC-0032): A β-Sparing Phosphoinositide 3-Kinase Inhibitor with High Unbound Exposure and Robust in Vivo Antitumor Activity

Chudi Ndubaku; Timothy P. Heffron; Steven Staben; Matthew Baumgardner; Nicole Blaquiere; Erin K. Bradley; Richard James Bull; Steven Do; Jennafer Dotson; Danette Dudley; Kyle A. Edgar; Lori Friedman; Richard Goldsmith; Robert Heald; Aleksandr Kolesnikov; Leslie Lee; Cristina Lewis; Michelle Nannini; Jim Nonomiya; Jodie Pang; Steve Price; Wei Wei Prior; Laurent Salphati; Steve Sideris; Jeffery J. Wallin; Lan Wang; Binqing Wei; Deepak Sampath; Alan G. Olivero

Dysfunctional signaling through the phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway leads to uncontrolled tumor proliferation. In the course of the discovery of novel benzoxepin PI3K inhibitors, we observed a strong dependency of in vivo antitumor activity on the free-drug exposure. By lowering the intrinsic clearance, we derived a set of imidazobenzoxazepin compounds that showed improved unbound drug exposure and effectively suppressed growth of tumors in a mouse xenograft model at low drug dose levels. One of these compounds, GDC-0032 (11l), was progressed to clinical trials and is currently under phase I evaluation as a potential treatment for human malignancies.


Angewandte Chemie | 2010

Four‐Component Synthesis of Fully Substituted 1,2,4‐Triazoles

Steven Staben; Nicole Blaquiere

The generation of a-aza-biaryl linkages continues to challenge synthetic chemists and is the focus of much research effort. Classic transition-metal-catalyzed C C cross-coupling remains the most prevalent route for biaryl synthesis; however, issues with the unavailability and instability of organometallic reactants for a-heteroatom biaryl coupling still limit the success of this approach. Importantly, recent improvements have been made in the mild generation, increased benchtop stability, controlled release, and mild coupling of these previously unreliable reaction partners. Direct C H arylation avoids the preparation of stoichiometric organometallic reagents altogether and has proven to be a powerful method for the synthesis of biaryls. However, limitations still exist and reaction optimization for specific coupling partners is commonplace. As many azole and azine heterocycles can be generated by the cyclodehydration of appropriate carbonyl precursors, an alternative approach to a-aza-biaryl coupling stems from the transition-metal-catalyzed carbonylative coupling of acyclic reagents that can undergo in situ cyclodehydration (Figure 1). Importantly, a


Journal of Medicinal Chemistry | 2011

Rational Design of Phosphoinositide 3-Kinase α Inhibitors That Exhibit Selectivity over the Phosphoinositide 3-Kinase β Isoform

Timothy P. Heffron; Binqing Wei; Alan G. Olivero; Steven Staben; Vickie Tsui; Steven Do; Jennafer Dotson; Adrian Folkes; Paul Goldsmith; Richard Goldsmith; Janet Gunzner; John D. Lesnick; Cristina Lewis; Simon Mathieu; Jim Nonomiya; Stephen J. Shuttleworth; Daniel P. Sutherlin; Nan Chi Wan; Shumei Wang; Christian Wiesmann; Bing-Yan Zhu

Of the four class I phosphoinositide 3-kinase (PI3K) isoforms, PI3Kα has justly received the most attention for its potential in cancer therapy. Herein we report our successful approaches to achieve PI3Kα vs PI3Kβ selectivity for two chemical series. In the thienopyrimidine series of inhibitors, we propose that select ligands achieve selectivity derived from a hydrogen bonding interaction with Arg770 of PI3Kα that is not attained with the corresponding Lys777 of PI3Kβ. In the benzoxepin series of inhibitors, the selectivity observed can be rationalized by the difference in electrostatic potential between the two isoforms in a given region rather than any specific interaction.


Organic Letters | 2012

Heteroarylation of Azine N-Oxides

Francis Gosselin; Scott Savage; Nicole Blaquiere; Steven Staben

Azine N-oxides undergo highly regioselective metalation with TMPZnCl·LiCl under mild conditions. A palladium-catalyzed Negishi cross-coupling reaction of the resulting organozinc species with heteroaromatic bromides provides heterobiaryls specifically oxidized at one nitrogen position in up to 95% yield.


Journal of Organic Chemistry | 2011

Rapid Synthesis of 1,3,5-Substituted 1,2,4-Triazoles from Carboxylic Acids, Amidines, and Hydrazines

Georgette Castanedo; Pamela S. Seng; Nicole Blaquiere; Sean Trapp; Steven Staben

A general method for the synthesis of 1,3,5-trisubstituted 1,2,4-triazoles has been developed from reaction of carboxylic acids, primary amidines, and monosubstituted hydrazines. This highly regioselective and one-pot process provides rapid access to highly diverse triazoles.


Structure | 2012

The crystal structure of the catalytic domain of the NF-κB inducing kinase reveals a narrow but flexible active site.

Gladys de Leon-Boenig; Krista K. Bowman; Jianwen A. Feng; Terry D. Crawford; Christine Everett; Yvonne Franke; Angela Oh; Mark S. Stanley; Steven Staben; Melissa A. Starovasnik; Heidi J.A. Wallweber; Jiansheng Wu; Lawren C. Wu; Adam R. Johnson; Sarah G. Hymowitz

The NF-κB inducing kinase (NIK) regulates the non-canonical NF-κB pathway downstream of important clinical targets including BAFF, RANKL, and LTβ. Despite numerous genetic studies associating dysregulation of this pathway with autoimmune diseases and hematological cancers, detailed molecular characterization of this central signaling node has been lacking. We undertook a systematic cloning and expression effort to generate soluble, well-behaved proteins encompassing the kinase domains of human and murine NIK. Structures of the apo NIK kinase domain from both species reveal an active-like conformation in the absence of phosphorylation. ATP consumption and peptide phosphorylation assays confirm that phosphorylation of NIK does not increase enzymatic activity. Structures of murine NIK bound to inhibitors possessing two different chemotypes reveal conformational flexibility in the gatekeeper residue controlling access to a hydrophobic pocket. Finally, a single amino acid difference affects the ability of some inhibitors to bind murine and human NIK with the same affinity.


Journal of Medicinal Chemistry | 2014

Back Pocket Flexibility Provides Group II p21-Activated Kinase (PAK) Selectivity for Type I 1/2 Kinase Inhibitors.

Steven Staben; Jianwen A. Feng; Karen Lyle; Marcia Belvin; Jason Boggs; Jason Burch; Ching-ching Chua; Haifeng Cui; Antonio G. DiPasquale; Lori Friedman; Christopher E. Heise; Hartmut Koeppen; Adrian Kotey; Robert Mintzer; Angela Oh; David Allen Roberts; Lionel Rouge; Joachim Rudolph; Christine Tam; Weiru Wang; Yisong Xiao; Amy E. Young; Yamin Zhang; Klaus P. Hoeflich

Structure-based methods were used to design a potent and highly selective group II p21-activated kinase (PAK) inhibitor with a novel binding mode, compound 17. Hydrophobic interactions within a lipophilic pocket past the methionine gatekeeper of group II PAKs approached by these type I 1/2 binders were found to be important for improving potency. A structure-based hypothesis and strategy for achieving selectivity over group I PAKs, and the broad kinome, based on unique flexibility of this lipophilic pocket, is presented. A concentration-dependent decrease in tumor cell migration and invasion in two triple-negative breast cancer cell lines was observed with compound 17.


Bioorganic & Medicinal Chemistry Letters | 2012

Potent and selective inhibitors of PI3Kδ: obtaining isoform selectivity from the affinity pocket and tryptophan shelf.

Daniel P. Sutherlin; Stewart J. Baker; Angelina Bisconte; Paul Blaney; Anthony Brown; Bryan K. Chan; David Chantry; Georgette Castanedo; Paul Depledge; Paul Goldsmith; David Michael Goldstein; Timothy Colin Hancox; Jasmit Kaur; David Knowles; Rama K. Kondru; John Lesnick; Matthew C. Lucas; Cristina Lewis; Jeremy Murray; Alan Nadin; Jim Nonomiya; Jodie Pang; Neil Anthony Pegg; Steve Price; Karin Reif; Brian Safina; Laurent Salphati; Steven Staben; Eileen Mary Seward; Stephen J. Shuttleworth

A potent inhibitor of PI3Kδ that is ≥ 200 fold selective for the remaining three Class I PI3K isoforms and additional kinases is described. The hypothesis for selectivity is illustrated through structure activity relationships and crystal structures of compounds bound to a K802T mutant of PI3Kγ. Pharmacokinetic data in rats and mice support the use of 3 as a useful tool compound to use for in vivo studies.


Journal of Medicinal Chemistry | 2016

The Rational Design of Selective Benzoxazepin Inhibitors of the α-Isoform of Phosphoinositide 3-Kinase Culminating in the Identification of (S)-2-((2-(1-Isopropyl-1H-1,2,4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl)oxy)propanamide (GDC-0326)

Timothy P. Heffron; Robert Heald; Chudi Ndubaku; Binqing Wei; Martin Augistin; Steven Do; Kyle A. Edgar; Charles Eigenbrot; Lori Friedman; Emanuela Gancia; Philip Stephen Jackson; G. Jones; Aleksander Kolesnikov; Leslie Lee; John D. Lesnick; Cristina Lewis; Neville McLean; Mario Mörtl; Jim Nonomiya; Jodie Pang; Steve Price; Wei Wei Prior; Laurent Salphati; Steve Sideris; Steven Staben; Stefan Steinbacher; Vickie Tsui; Jeffrey Wallin; Deepak Sampath; Alan G. Olivero

Inhibitors of the class I phosphoinositide 3-kinase (PI3K) isoform PI3Kα have received substantial attention for their potential use in cancer therapy. Despite the particular attraction of targeting PI3Kα, achieving selectivity for the inhibition of this isoform has proved challenging. Herein we report the discovery of inhibitors of PI3Kα that have selectivity over the other class I isoforms and all other kinases tested. In GDC-0032 (3, taselisib), we previously minimized inhibition of PI3Kβ relative to the other class I insoforms. Subsequently, we extended our efforts to identify PI3Kα-specific inhibitors using PI3Kα crystal structures to inform the design of benzoxazepin inhibitors with selectivity for PI3Kα through interactions with a nonconserved residue. Several molecules selective for PI3Kα relative to the other class I isoforms, as well as other kinases, were identified. Optimization of properties related to drug metabolism then culminated in the identification of the clinical candidate GDC-0326 (4).


Bioorganic & Medicinal Chemistry Letters | 2010

Structure-based optimization of pyrazolo-pyrimidine and -pyridine inhibitors of PI3-kinase.

Steven Staben; Timothy P. Heffron; Daniel P. Sutherlin; Seema R. Bhat; Georgette Castanedo; Irina Chuckowree; Jenna Dotson; Adrian Folkes; Lori S. Friedman; Leslie Lee; John Lesnick; Cristina Lewis; Jeremy Murray; Jim Nonomiya; Alan G. Olivero; Emile Plise; Jodie Pang; Wei Wei Prior; Laurent Salphati; Lionel Rouge; Deepak Sampath; Vickie Tsui; Nan Chi Wan; Shumei Wang; Christian Weismann; Ping Wu; Bing-Yan Zhu

Starting from HTS hit 1a, X-ray co-crystallization and molecular modeling were used to design potent and selective inhibitors of PI3-kinase. Bioavailablity in this series was improved through careful modulation of physicochemical properties. Compound 12 displayed in vivo knockdown of PI3K pharmacodynamic markers such as pAKT, pPRAS40, and pS6RP in a PC3 prostate cancer xenograft model.

Collaboration


Dive into the Steven Staben's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge