Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nan Dai is active.

Publication


Featured researches published by Nan Dai.


Biosensors and Bioelectronics | 2009

Signal amplification of electrochemical immunosensor for the detection of human serum IgG using double-codified nanosilica particles as labels

Zhaoyang Zhong; Meng-Xia Li; De-Bing Xiang; Nan Dai; Ying Qing; Dong Wang; Dianping Tang

A simple and sensitive method for in situ amplified electrochemical immunoassay of human serum IgG has been developed by using double-codified nanosilica particles as labels based on horseradish peroxidase-doped nanosilica particles (HRP-SiO(2)) with the conjugation of anti-IgG antibodies (anti-IgG-SiO(2)-HRP). With the sandwich-type immunoassay format, the linear range of the developed immunosensor by using anti-IgG-SiO(2)-HRP as tracer and hydrogen peroxide (H(2)O(2)) as enzyme substrate is 0.01-15 nmol/L IgG with a detection limit of 5.0 pmol/L, while the assay sensitivity by directly using HRP-labeled anti-IgG as secondary antibodies is 1.0-10 nmol/L with a detection limit of 0.1 nmol/L IgG. The reproducibility, stability and specificity of the proposed immunoassay method were acceptable. The IgG concentrations of the clinical serum specimens assayed by the developed immunosensor show consistent results in comparison with those obtained by commercially available enzyme-linked immunosorbent assay (ELISA) method.


Journal of Biological Chemistry | 2010

Identification and characterization of mitochondrial targeting sequence of human apurinic/apyrimidinic endonuclease 1.

Mengxia Li; Zhaoyang Zhong; Jianwu Zhu; De-Bing Xiang; Nan Dai; Xiaojing Cao; Yi Qing; Zhen-Zhou Yang; Jiayiin Xie; Zeng-Peng Li; Laura Baugh; Ge Wang; Dong Wang

Dually targeted mitochondrial proteins usually possess an unconventional mitochondrial targeting sequence (MTS), which makes them difficult to predict by current bioinformatics approaches. Human apurinic/apyrimidinic endonuclease (APE1) plays a central role in the cellular response to oxidative stress. It is a dually targeted protein preferentially residing in the nucleus with conditional distribution in the mitochondria. However, the mitochondrial translocation mechanism of APE1 is not well characterized because it harbors an unconventional MTS that is difficult to predict by bioinformatics analysis. Two experimental approaches were combined in this study to identify the MTS of APE1. First, the interactions between the peptides from APE1 and the three purified translocase receptors of the outer mitochondrial membrane (Tom) were evaluated using a peptide array screen. Consequently, the intracellular distribution of green fluorescent protein-tagged, truncated, or mutated APE1 proteins was traced by tag detection. The results demonstrated that the only MTS of APE1 is harbored within residues 289–318 in the C terminus, which is normally masked by the intact N-terminal structure. As a dually targeted mitochondrial protein, APE1 possesses a special distribution pattern of different subcellular targeting signals, the identification of which sheds light on future prediction of MTSs.


PLOS ONE | 2013

Silencing of APE1 enhances sensitivity of human hepatocellular carcinoma cells to radiotherapy in vitro and in a xenograft model.

Yanping Cun; Nan Dai; Chengjie Xiong; Mengxia Li; Jiangdong Sui; Chengyuan Qian; Zheng Li; Dong Wang

Resistance to radiotherapy is a key limitation for the treatment of human hepatocellular carcinoma (HCC). To overcome this problem, we investigated the correlation between radioresistance and the human apurinic/apyrimidinic endonuclease (APE1), a bifunctional protein, which plays an important role in DNA repair and redox regulation activity of transcription factors. In the present study, we examined the radiosensitivity profiles of three human HCC cell lines, HepG2, Hep3B, and MHCC97L, using the adenoviral vector Ad5/F35-mediated APE1 siRNA (Ad5/F35-siAPE1). The p53 mutant cell lines MHCC97L showed radioresistance, compared with HepG2 and Hep3B cells. APE1 was strongly expressed in MHCC97L cells and was induced by irradiation in a dose-dependent manner, and Ad5/F35-siAPE1 effectively inhibited irradiation-induced APE1 and p53 expression. Moreover, silencing of APE1 significantly potentiated the growth inhibition and apoptosis induction by irradiation in all tested human HCC cell lines. In addition, Ad5/F35-siAPE1 significantly enhanced inhibition of tumor growth and potentiated cell apoptosis by irradiation both in HepG2 and MHCC97L xenografts. In conclusion, down regulation of APE1 could enhance sensitivity of human HCC cells to radiotherapy in vitro and in vivo.


PLOS ONE | 2013

Serum APE1 Autoantibodies: A Novel Potential Tumor Marker and Predictor of Chemotherapeutic Efficacy in Non-Small Cell Lung Cancer

Nan Dai; Xiaojing Cao; Mengxia Li; Yi Qing; Ling Liao; Xianfeng Lu; Shiheng Zhang; Zheng Li; Yuxin Yang; Dong Wang

Apurinic/apyrimidinic endonuclease 1 (APE1), which has the dual functions of both DNA repair and redox activity, has been reported to be highly expressed in non-small cell lung cancer (NSCLC), and this appears to be a characteristic related to chemotherapy resistance. In this study, we identified serum APE1 autoantibodies (APE1-AAbs) in NSCLC patients and healthy controls by immunoblotting and investigated the expression of APE1-AAbs by indirect ELISA from the serum of 292 NSCLC patients and 300 healthy controls. In addition, serum APE1-AAbs level alterations of 91 patients were monitored before and after chemotherapy. Our results showed that serum APE1-AAbs can be detected in both NSCLC patients and healthy controls. Serum APE1-AAbs were significantly higher than those of healthy controls and closely related to APE1 antigen levels both in tumor tissues and the peripheral blood. Moreover, the change in levels of serum APE1-AAbs in NSCLC is closely associated with the response to chemotherapy. These results suggest that APE1-AAbs is a potential tumor marker and predictor of therapeutic efficacy in NSCLC.


Free Radical Biology and Medicine | 2012

Human AP endonuclease/redox factor APE1/ref-1modulates mitochondrial function after oxidative stress by regulating the transcriptional activity of NRF1

Mengxia Li; Carlo Vascotto; Shangcheng Xu; Nan Dai; Yi Qing; Zhaoyang Zhong; Gianluca Tell; Dong Wang

Maintenance of mitochondrial functionality largely depends on nuclear transcription because most mitochondrial proteins are encoded by the nuclear genome and transported to the mitochondria. Nuclear respiration factor 1 (NRF1) plays a crucial role in regulating the expression of a broad range of mitochondrial genes in the nucleus in response to cellular oxidative stress. However, little is known about the redox regulatory mechanism of the transcriptional activity of NRF1. In this study, we show that the human apurinic/apyrimidinic endonuclease/redox factor (APE1/Ref-1) is involved in mitochondrial function regulation by modulating the DNA-binding activity of NRF1. Our results show that both APE1 expression level and its redox activity are essential for maintenance of the mitochondrial function after tert-butylhydroperoxide-induced oxidative stress. Upon knocking down or redox mutation of APE1, NRF1 DNA-binding activity was impaired and, consequently, the expression of its downstream genes, including Tfam, Cox6c, and Tomm22, was significantly reduced. NRF1 knockdown blocked the restoration of mitochondrial function by APE1 overexpression, which further suggests APE1 regulates mitochondrial function through an NRF1-dependent pathway. Taken together, our results reveal APE1 as a new coactivator of NRF1, which highlights an additional regulatory role of APE1 in maintenance of mitochondrial functionality.


International Journal of Radiation Oncology Biology Physics | 2011

CALIFORNIUM-252 BRACHYTHERAPY COMBINED WITH EXTERNAL-BEAM RADIOTHERAPY FOR CERVICAL CANCER: LONG-TERM TREATMENT RESULTS

Xin Lei; Chengyuan Qian; Yi Qing; Kewei Zhao; Zheng-Zhou Yang; Nan Dai; Zhaoyang Zhong; Cheng Tang; Zheng Li; Xianqing Gu; Qian Zhou; Yan Feng; Yanli Xiong; Jinlu Shan; Dong Wang

PURPOSE To observe, by retrospective analysis, the curative effects and complications due to californium-252 (252Cf) neutron intracavitary brachytherapy (ICBT) combined with external-beam radiotherapy (EBRT) in the treatment of cervical cancer. METHODS AND MATERIALS From February 1999 to December 2007, 696 patients with cervical cancer (Stages IB to IIIB) were treated with 252Cf-ICBT in combination of EBRT. Of all, 31 patients were at Stage IB, 104 at IIA, 363 at IIB, 64 at IIIA, and 134 at IIIB. Californium-252 ICBT was delivered at 7-12 Gy per insertion per week, with a total dose of 29-45 Gy to reference point A in three to five insertions. The whole pelvic cavity was treated with 8-MV X-ray external irradiation at 2 Gy per fraction, four times per week. After 16-38 Gy of external irradiation, the center of the whole pelvic field was blocked with a 4-cm-wide lead shield, with a total external irradiation dose of 44-56 Gy. The total treatment course was 5 to 6 weeks. RESULTS Overall survival rate at 3 and 5 years for all patients was 76.0% and 64.9%, respectively. Disease-free 3- and 5-year survival rates of patients were 71.2% and 58.4%, respectively. Late complications included vaginal contracture and adhesion, radiation proctitis, radiation cystitis, and inflammatory bowel, which accounted for 5.8%, 7.1%, 6.2%, and 4.9%, respectively. Univariate analysis results showed significant correlation of stage, age, histopathologic grade, and lymph node status with overall survival. Cox multiple regression analysis showed that the independent variables were stage, histopathologic grade, tumor size, and lymphatic metastasis in all patients. CONCLUSION Results of this series suggest that the combined use of 252Cf-ICBT with EBRT is an effective method for treatment of cervical cancer.


International Journal of Medical Sciences | 2013

Human apurinic/apyrimidinic endonuclease siRNA inhibits the angiogenesis induced by X-ray irradiation in lung cancer cells.

Xianqing Gu; Yanping Cun; Mengxia Li; Yi Qing; Feng Jin; Zhaoyang Zhong; Nan Dai; Chengyuan Qian; Jiangdong Sui; Dong Wang

Objective: Radiotherapy is an important and effective treatment method for non-small cell lung cancer (NSCLC). Nonetheless, radiotherapy can alter the expression of proangiogenic molecules and induce angiogenesis. Human apurinic/apyrimidinic endonuclease (APE1) is a multifunctional protein, which has DNA repair and redox function. Our previous studies indicated APE1 is also a crucial angiogenic regulator. Thus, we investigated the effect of APE1 on radiation-induced angiogenesis in lung cancer and its underlying mechanism. Methods: Tumor specimens of 136 patients with NSCLC were obtained from 2003 to 2008. The APE1 and vascular endothelial growth factor (VEGF) expression, as well as microvessel density (MVD) were observed with immunohistochemistry in tumor samples. Human lung adenocarcinoma A549 cells were treated with Ad5/F35-APE1 siRNA and/or irradiation, and then the cells were used for APE1 analysis by Western blot and VEGF analysis by RT-PCR and ELISA. To elucidate the underline mechanism of APE1 on VEGF expression, HIF-1α protein level was determined by Western blot, and the DNA binding activity of HIF-1α was detected by EMSA. Transwell migration assay and capillary-like structure assay were used to observe the migration and capillary-like structure formation ability of human umbilical veins endothelial cells (HUVECs) that were co-cultured with Ad5/F35-APE1 siRNA and (or) irradiation treated A549 cells culture medium. Results: The high expression rates of APE1 and VEGF in NSCLC were 77.94% and 66.18%, respectively. The expressions of APE1 was significantly correlated with VEGF and MVD (r=0.369, r=0.387). APE1 and VEGF high expression were significantly associated with reduced disease free survival (DFS) time. The high expressions of APE1 and VEGF on A549 cells were concurrently induced by X-ray irradiation in a dose-dependent manner. Silencing of APE1 by Ad5/F35-APE1 siRNA significantly decreased DNA binding activity of HIF-1α and suppressed the expression of VEGF in A549 cells, moreover, significantly inhibited the endothelial cells immigration and capillary-like structure formation induced by irradiated A549 cells. Conclusion: Our results indicate that APE1 may play a crucial role in angiogenesis induced by irradiation. Administration of Ad5/F35-APE1 siRNA during radiotherapy could be a potent adjuvant therapeutic approach to enhance the radiotherapy response, effectively eliminate metastasis and improve the efficacy of radiotherapy for NSCLC.


Cancer Science | 2014

Apurinic/apyrimidinic endonuclease 1 induced upregulation of fibroblast growth factor 2 and its receptor 3 induces angiogenesis in human osteosarcoma cells.

Tao Ren; Yi Qing; Nan Dai; Mengxia Li; Chengyuan Qian; Yuxin Yang; Yi Cheng; Zheng Li; Shiheng Zhang; Zhaoyang Zhong; Dong Wang

Tumor angiogenesis contributes to inferior prognosis in osteosarcoma. Apurinic/apyrimidinic endonuclease 1 (APE1) and fibroblast growth factor 2 (FGF2) and its receptor 3 (FGFR3) signaling pathway plays an important role in the angiogenic process. In this study we observed that high expression of APE1, FGF2 and FGFR3, and microvessel density are positively correlated with poor prognosis of osteosarcoma patients. Furthermore, the Cox model showed that the tumor size, FGF2 and its receptor 3 (FGFR3), and microvessel density were adverse prognostic factors. Based on our clinical data, and the fact that APE1 is involved in tumor angiogenesis, we hypothesize that it is very likely that APE1 may indirectly promote angiogenesis by upregulating fibroblast FGF2 and FGFR3. Our preliminary data show small interfering RNA‐mediated silence of APE1 experiments, which further supports this hypothesis. APE1‐small interfering RNA significantly inhibited tumor angiogenesis by downregulating in vitro expression of FGF2 and FGFR3 in human umbilical vein endothelial cells in Matrigel tube formation assay, and further inhibited tumor growth in vivo in a mouse xenograft model. Thus, the proposed APE1‐FGF2 and FGFR3 pathway may provide a novel mechanism for regulation of FGF2 and FGFR3 by APE1 in tumor angiogenesis.


Cancer Science | 2010

Knock down of the dual functional protein apurinic /apyrimidinic endonuclease 1 enhances the killing effect of hematoporphrphyrin derivative‐mediated photodynamic therapy on non‐small cell lung cancer cells in vitro and in a xenograft model

Zhen-Zhou Yang; Meng-Xia Li; Yun-Song Zhang; De-Bing Xiang; Nan Dai; Lin-Li Zeng; Zeng-Peng Li; Ge Wang; Dong Wang

Photodynamic therapy (PDT) is considered to be effective treatment for many cancers including lung cancer, head and neck cancers, and prostate cancer. It uses the combination of nontoxic photosensitizers and harmless visible light to generate reactive oxygen species and kill cells. However, DNA repair and reactive oxygen species‐induced signaling pathway activation play crucial roles in cellular response to PDT and may also result in therapeutic limitation of PDT. To improve the cancer therapeutic efficacy of PDT, we targeted apurinic/apyrimidinic endonuclease (APE1), which is essential for both DNA repair and redox regulation of gene transcription, as a potential candidate for PDT combined gene therapy. In our study, an adenovirus‐mediated APE1 silencing strategy was introduced to test its therapeutic enhancement for the non‐small cell lung cancer cell line A549 both in vitro and in vivo after hematoporphrphyrin derivative (HpD)‐mediated PDT. The adenovirus vector Ad5/F35‐shAPE1 was validated to significantly suppress the protein expression of APE1 in cultured A549 cell and in its xenograft of nude mice. Ad5/F35‐shAPE1 effectively inhibited APE1 protein upregulation induced by PDT and resulted in an increase in A549 cell killing by photoirradiation compared with the hematoporphrphyrin derivative‐PDT alone group. Ad5/F35‐shAPE1 suppressed the DNA repair capacity for single‐strand breaks and abolished the activation of some stress‐related transcription factors such as hypoxia‐induced factor (HIF)‐1 that consequently lead to increased cell apoptosis after PDT. Additionally, knock down of APE1 enhanced the tumor suppression efficacy of PDT on the A549 xenograft. Our study indicated that APE1‐targeted gene therapy combined with PDT is a promising strategy for enhancement of the efficacy of PDT in treatment of non‐small cell lung cancer. (Cancer Sci 2009)


Analytical Biochemistry | 2012

Signal-enhanced electrochemiluminescence immunosensor based on synergistic catalysis of nicotinamide adenine dinucleotide hydride and silver nanoparticles.

Guangjie Wang; Feng Jin; Nan Dai; Zhaoyang Zhong; Yi Qing; Mengxia Li; Ruo Yuan; Dong Wang

A new metal-organic nanocomposite with synergistic catalysis function was prepared and developed to construct an electrochemiluminescence (ECL) immunosensor for ultrasensitive detection of tumor biomarker CA125. Silver nanoparticles (AgNPs) and nicotinamide adenine dinucleotide hydride (NADH) that can participate and catalyze the ECL reaction of Ru(bpy)(3)(2+) were employed as the metal component and the organic component to synthesize the metal-organic nanocomposite of NADH-AgNPs (NA). The novel ECL immunosensor was assembled via Ru(bpy)(3)(2+)-doped silica nanoparticles (Ru-SiO(2)) modified electrode with the NA as immune labels. First, the chitosan-suspended Ru-SiO(2) nanoparticles were cast on the gold electrode surface to immobilize the ECL probes of Ru(bpy)(3)(2+) and link gold nanoparticles. Then, the primary antibodies were loaded onto the modified electrode via the gold sulfhydryl covalent binding. After immunobinding the analytes of antigen, NA-attached secondary antibodies could be captured as a sandwich type on the electrode. Finally, based on the circularly synergistic catalysis by the silver and NADH for the solid-phase ECL of Ru(bpy)(3)(2+), the proposed immunosensor sensed the concentration of antigen. The synergistic ECL catalysis of metal-organic nanocomposite amplified response signal and pushed the detection limit down to 0.03 U ml(-1), which initiated a new ECL labeling field and has great significance for ECL immunoassays.

Collaboration


Dive into the Nan Dai's collaboration.

Top Co-Authors

Avatar

Dong Wang

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Mengxia Li

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Zhaoyang Zhong

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Yi Qing

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Shiheng Zhang

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Jinlu Shan

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Wei Guan

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Chengyuan Qian

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Yuxin Yang

Third Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Feng Jin

Third Military Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge