Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nan Sook Lee is active.

Publication


Featured researches published by Nan Sook Lee.


Nature Biotechnology | 2002

Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells

Nan Sook Lee; Taikoh Dohjima; Gerhard Bauer; Haitang Li; Ming-Jie Li; Ali Ehsani; Paul M. Salvaterra; John J. Rossi

RNA interference (RNAi) is the process of sequence-specific, posttranscriptional gene silencing in animals and plants initiated by double-stranded (ds) RNA that is homologous to the silenced gene. This technology has usually involved injection or transfection of dsRNA in model nonvertebrate organisms. The longer dsRNAs are processed into short (19–25 nucleotides) small interfering RNAs (siRNAs) by a ribonucleotide–protein complex that includes an RNAse III–related nuclease (Dicer), a helicase family member, and possibly a kinase and an RNA-dependent RNA polymerase (RdRP). In mammalian cells it is known that dsRNA 30 base pairs or longer can trigger interferon responses that are intrinsically sequence-nonspecific, thus limiting the application of RNAi as an experimental and therapeutic agent. Duplexes of 21-nucleotide siRNAs with short 3′ overhangs, however, can mediate RNAi in a sequence-specific manner in cultured mammalian cells. One limitation in the use of siRNA as a therapeutic reagent in vertebrate cells is that short, highly defined RNAs need to be delivered to target cells—a feat thus far only accomplished by the use of synthetic, duplex RNAs delivered exogenously to cells. In this report, we describe a mammalian Pol III promoter system capable of expressing functional double-stranded siRNAs following transfection into human cells. In the case of the 293 cells cotransfected with the HIV-1 pNL4-3 proviral DNA and the siRNA-producing constructs, we were able to achieve up to 4 logs of inhibition of expression from the HIV-1 DNA.


Molecular Therapy | 2003

Inhibition of HIV-1 by lentiviral vector-transduced siRNAs in T lymphocytes differentiated in SCID-hu mice and CD34+ progenitor cell-derived macrophages

Akhil Banerjea; Ming-Jie Li; Gerhard Bauer; Leila Remling; Nan Sook Lee; John J. Rossi; Ramesh Akkina

The phenomenon of RNA interference mediated by small interfering RNAs (siRNAs) is a potent gene-silencing mechanism. A number of recent studies demonstrated inhibition of HIV-1 replication in cultured cells using this approach. To make further progress and harness this technology for HIV-1 gene therapy in a stem cell setting, in vivo studies using primary hematopoietic cells are needed. Using an HIV-based lentiviral vector we introduced an anti-Rev siRNA construct into CD34(+) hematopoietic progenitor cells. The siRNA-transduced progenitor cells were allowed to mature into macrophages in vitro and T cells in vivo in SCID-hu mouse thy/liv grafts. Phenotypically normal T cells and macrophages displaying characteristic surface markers were obtained. In vitro HIV-1 challenge of the siRNA-expressing macrophages and T cells with macrophage-tropic and T-cell-tropic HIV-1, respectively, showed marked viral resistance. These experiments demonstrate the utility of siRNAs delivered into hematopoietic stem cells via lentiviral vectors for future in vivo applications.


Molecular Therapy | 2003

Inhibition of HIV-1 infection by lentiviral vectors expressing Pol III-promoted anti-HIV RNAs.

Ming-Jie Li; Gerhard Bauer; Alessandro Michienzi; Jiing Kuan Yee; Nan Sook Lee; James Kim; Shirley Li; Daniela Castanotto; John A. Zaia; John J. Rossi

A primary advantage of lentiviral vectors is their ability to pass through the nuclear envelope into the cell nucleus thereby allowing transduction of nondividing cells. Using HIV-based lentiviral vectors, we delivered an anti-CCR5 ribozyme (CCR5RZ), a nucleolar localizing TAR RNA decoy, or Pol III-expressed siRNA genes into cultured and primary cells. The CCR5RZ is driven by the adenoviral VA1 Pol III promoter, while the human U6 snRNA Pol III-transcribed TAR decoy is embedded in a U16 snoRNA (designated U16TAR), and the siRNAs were expressed from the human U6 Pol III promoter. The transduction efficiencies of these vectors ranged from 96-98% in 293 cells to 15-20% in primary PBMCs. A combination of the CCR5RZ and U16TAR decoy in a single vector backbone gave enhanced protection against HIV-1 challenge in a selective survival assay in both primary T cells and CD34(+)-derived monocytes. The lentiviral vector backbone-expressed siRNAs also showed potent inhibition of p24 expression in PBMCs challenged with HIV-1. Overall our results demonstrate that the lentiviral-based vectors can efficiently deliver single constructs as well as combinations of Pol III therapeutic expression units into primary hematopoietic cells for anti-HIV gene therapy and hold promise for stem or T-cell-based gene therapy for HIV-1 infection.


Journal of Biological Chemistry | 2005

Cytoplasmic and Nuclear Retained DMPK mRNAs Are Targets for RNA Interference in Myotonic Dystrophy Cells

Marc-André Langlois; Christelle Boniface; Gang Wang; Jessica Alluin; Paul M. Salvaterra; Jack Puymirat; John J. Rossi; Nan Sook Lee

Small interfering RNA (siRNA) duplexes induce the specific cleavage of target RNAs in mammalian cells. Their involvement in down-regulation of gene expression is termed RNA interference (RNAi). It is widely believed that RNAi predominates in the cytoplasm. We report here the co-existence of cytoplasmic and nuclear RNAi phenomena in primary human myotonic dystrophy type 1 (DM1) cells by targeting myotonic dystrophy protein kinase (DMPK) mRNAs. Heterozygote DM1 myoblasts from a human DM1 fetus produce a nuclear retained mutant DMPK transcript with large CUG repeats (∼3,200) from one allele of the DMPK gene and a wild type transcript with 18 CUG repeats, thus providing for both a nuclear and cytoplasmic expression profile to be evaluated. We demonstrate here for the first time down-regulation of the endogenous nuclear retained mutant DMPK mRNAs targeted with lentivirus-delivered short hairpin RNAs (shRNAs). This nuclear RNAi(-like) phenomenon was not observed when synthetic siRNAs were delivered by cationic lipids, suggesting either a link between processing of the shRNA and nuclear import or a separate pathway for processing shRNAs in the nuclei. Our observation of simultaneous RNAi on both cytoplasmic and nuclear retained DMPK has important implications for post-transcriptional gene regulation in both compartments of mammalian cells.


Molecular Therapy | 2003

Small Interfering RNAs Expressed from a Pol III Promoter Suppress the EWS/Fli-1 Transcript in an Ewing Sarcoma Cell Line

Taikoh Dohjima; Nan Sook Lee; Haitang Li; Takatoshi Ohno; John J. Rossi

The EWS/Fli-1 fusion gene encodes an oncogenic fusion protein. The fusion is a product of the translocation t(11;22) (q24;q12), which is detected in 85% of Ewing sarcoma and primitive neuroectodermal tumor cells. Utilizing intracellularly expressed 21- to 23-nucleotide small interfering RNAs (siRNAs) targeting the EWS/Fli-1 fusion transcript in an Ewing sarcoma cell line, we achieved a greater than 80% reduction in the EWS/Fli-1 transcript. The reduction in transcript levels was accompanied by growth inhibition of an Ewing cell line. In addition to quantitating the reduction of the fusion transcript, we carefully monitored reduction of the endogenous EWS and Fli-1 mRNAs as well. One of the two siRNAs targeted to the fusion transcript also partially downregulated the Fli-1 mRNA, further potentiating the growth inhibition. These results highlight both the power of siRNAs and the potential side reactions that need to be carefully monitored. In addition, these results provide the first demonstration of expressed siRNAs downregulating an oncogenic fusion transcript. The results and observations from these studies should prove useful in targeting other fusion transcripts characteristic of sarcomas and erythroleukemias.


Gene | 2000

Rev-binding aptamer and CMV promoter act as decoys to inhibit HIV replication.

Krystyna Konopka; Nan Sook Lee; John J. Rossi; Nejat Düzgüneş

We examined whether the antiviral effect of an HIV-1 Rev-binding aptamer [RBE(apt)] could be enhanced by a ribozyme directed against the HIV-1 env gene, and whether the antiviral activity was affected by different promoters. The efficacy of the aptamer and ribozyme DNAs was tested in HeLa cells co-transfected with the HIV-1 proviral clones, HXBDeltaBgl or pNL4-3, using transferrin-lipoplexes. The RBE(apt) and anti-env ribozyme genes were inserted into the pTZU6+27 plasmid, or constructed under the control of the human cytomegalovirus (CMV) or Rous sarcoma virus (RSV) promoters. The parental vector plasmids were used as controls. Co-transfection of the pTZU6+27 RBE(apt) plasmid with HXBDeltaBgl, or pNL4-3, at a weight ratio of 5:1, inhibited p24 production by 70 and 45%, respectively. The RSV RBE(apt) plasmid co-transfected with either HIV clone, at the same weight ratio, reduced viral production by 88%. The addition of the anti-env ribozyme to the RSV RBE(apt) did not enhance its antiviral activity. When the constructs were under the control of the CMV promoter, the expression of the HIV plasmids was very low and was independent of the presence of the RBE(apt). Thus, the effect of the RBE(apt) was strongly dependent on the promoter of the tested construct. The anti-HIV activity of the CMV RBE(apt) construct was non-specific, because co-transfection with either pCMV. SPORT-betagal or pCMVlacZ significantly suppressed HIV production from the HIV proviral clones. The reduction in p24 could not be attributed to the non-specific toxicity of the transfection procedure. Transfection of acutely HIV-infected HeLa-CD4 cells with pCMV.SPORT-betagal reduced the p24 level by 35%, while the expression of the U6 RBE(apt) did not affect p24 production. The suppression of HIV production from the HIV proviral clones by the CMV promoter constructs in the co-transfection assays may be explained by competition for transcription factors (TFs) between HIV and CMV promoters. This observation points to the potential for misleading results in co-transfections involving CMV constructs and HIV.


Journal of Neurophysiology | 2013

Imaging the response of the retina to electrical stimulation with genetically encoded calcium indicators

Andrew C. Weitz; Matthew R. Behrend; Nan Sook Lee; Ronald L. Klein; Vince A. Chiodo; William W. Hauswirth; Mark S. Humayun; James D. Weiland; Robert H. Chow

Epiretinal implants for the blind are designed to stimulate surviving retinal neurons, thus bypassing the diseased photoreceptor layer. Single-unit or multielectrode recordings from isolated animal retina are commonly used to inform the design of these implants. However, such electrical recordings provide limited information about the spatial patterns of retinal activation. Calcium imaging overcomes this limitation, as imaging enables high spatial resolution mapping of retinal ganglion cell (RGC) activity as well as simultaneous recording from hundreds of RGCs. Prior experiments in amphibian retina have demonstrated proof of principle, yet experiments in mammalian retina have been hindered by the inability to load calcium indicators into mature mammalian RGCs. Here, we report a method for labeling the majority of ganglion cells in adult rat retina with genetically encoded calcium indicators, specifically GCaMP3 and GCaMP5G. Intravitreal injection of an adeno-associated viral vector targets ∼85% of ganglion cells with high specificity. Because of the large fluorescence signals provided by the GCaMP sensors, we can now for the first time visualize the response of the retina to electrical stimulation in real-time. Imaging transduced retinas mounted on multielectrode arrays reveals how stimulus pulse shape can dramatically affect the spatial extent of RGC activation, which has clear implications in prosthetic applications. Our method can be easily adapted to work with other fluorescent indicator proteins in both wild-type and transgenic mammals.


Biotechnology and Bioengineering | 2013

Investigating contactless high frequency ultrasound microbeam stimulation for determination of invasion potential of breast cancer cells.

Jae Youn Hwang; Nan Sook Lee; Changyang Lee; Kwok Ho Lam; Hyung Ham Kim; Jonghye Woo; Ming-Yi Lin; Kassandra Kisler; Hojong Choi; Qifa Zhou; Robert H. Chow; K. Kirk Shung

In this article, we investigate the application of contactless high frequency ultrasound microbeam stimulation (HFUMS) for determining the invasion potential of breast cancer cells. In breast cancer patients, the finding of tumor metastasis significantly worsens the clinical prognosis. Thus, early determination of the potential of a tumor for invasion and metastasis would significantly impact decisions about aggressiveness of cancer treatment. Recent work suggests that invasive breast cancer cells (MDA‐MB‐231), but not weakly invasive breast cancer cells (MCF‐7, SKBR3, and BT‐474), display a number of neuronal characteristics, including expression of voltage‐gated sodium channels. Since sodium channels are often co‐expressed with calcium channels, this prompted us to test whether single‐cell stimulation by a highly focused ultrasound microbeam would trigger Ca2+ elevation, especially in highly invasive breast cancer cells. To calibrate the diameter of the microbeam ultrasound produced by a 200‐MHz single element LiNbO3 transducer, we focused the beam on a wire target and performed a pulse‐echo test. The width of the beam was ∼17 µm, appropriate for single cell stimulation. Membrane‐permeant fluorescent Ca2+ indicators were utilized to monitor Ca2+ changes in the cells due to HFUMS. The cell response index (CRI), which is a composite parameter reflecting both Ca2+ elevation and the fraction of responding cells elicited by HFUMS, was much greater in highly invasive breast cancer cells than in the weakly invasive breast cancer cells. The CRI of MDA‐MB‐231 cells depended on peak‐to‐peak amplitude of the voltage driving the transducer. These results suggest that HFUMS may serve as a novel tool to determine the invasion potential of breast cancer cells, and with further refinement may offer a rapid test for invasiveness of tumor biopsies in situ. Biotechnol. Bioeng. 2013;110: 2697–2705.


The FASEB Journal | 2001

Functional colocalization of ribozymes and target mRNAs in Drosophila oocytes

Nan Sook Lee; Banghua Sun; Rodney Williamson; Niki Gunkel; Paul M. Salvaterra; John J. Rossi

The effectiveness of catalytic RNAs (ribozymes) should be increased when they are colocalized to the same intracellular compartment as their RNA targets. We colocalized ribozymes with their mRNA targets in an animal model by using the discrete RNA localization signals present in the 3′ untranslated regions (UTRs) of Drosophila bicoid and oskar mRNAs. These signals have been fused to a lacZ mRNA target and hammerhead ribozymes targeted against lacZ. Ri‐bozyme efficacy was first assessed by an oligodeoxyri‐bonucleotide‐based assay to identify the most accessible sites for ribozyme interaction on native lacZ transcripts in ovary extracts. The most accessible sequence was used for the design and in vivo testing of a hammerhead ribozyme. When the ribozyme and target with synonymous 3′ UTRs were expressed in the same ovaries, colocalization could be indirectly demonstrated by in situ hybridization. Colocalized ribozyme and target mRNAs resulted in a two‐ to threefold enhancement of ribozyme function compared with noncolocalized transcripts. This study provides the first demonstration of functional ribozyme target colocaliza‐tion in an animal model.—Lee, N. S., Sun, B., Williamson, R., Gunkel, N., Salvaterra, P. M., Rossi, J. J. Functional colocalization of ribozymes and target mRNAs in Drosophila oocytes. FASEB J. 15, 2390–2400 (2001)


RNA | 2008

Functional and intracellular localization properties of U6 promoter-expressed siRNAs, shRNAs, and chimeric VA1 shRNAs in mammalian cells.

Nan Sook Lee; Daniel H. Kim; Jessica Alluin; Marjorie A Robbins; Shuo Gu; Haitang Li; James Kim; Paul M. Salvaterra; John J. Rossi

RNA polymerase III (Pol III) expression systems for short hairpin RNAs (U6 shRNAs or chimeric VA1 shRNAs) or individually expressed sense/antisense small interfering RNA (siRNA) strands have been used to trigger RNA interference (RNAi) in mammalian cells. Here we show that individually expressed siRNA expression constructs produce 21-nucleotide siRNAs that strongly accumulate as duplex siRNAs in the nucleus of human cells, exerting sequence-specific silencing activity similar to cytoplasmic siRNAs derived from U6 or VA1-expressed hairpin precursors. In contrast, 29-mer siRNAs separately expressed as sense/antisense strands fail to elicit RNAi activity, despite accumulation of these RNAs in the nucleus. Our findings delineate different intracellular accumulation patterns for the three expression strategies and suggest the possibility of a nuclear RNAi pathway that requires 21-mer duplexes.

Collaboration


Dive into the Nan Sook Lee's collaboration.

Top Co-Authors

Avatar

John J. Rossi

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar

Robert H. Chow

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Andrew C. Weitz

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Kirk Shung

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Daniela Castanotto

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gerhard Bauer

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar

Haitang Li

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ming-Jie Li

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar

Qifa Zhou

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge