Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nancy B. Rybicki is active.

Publication


Featured researches published by Nancy B. Rybicki.


Estuaries | 2004

Habitat requirements for submerged aquatic vegetation in Chesapeake Bay : Water quality, light regime, and physical-chemical factors

W. Michael Kemp; Richard Batleson; Peter Bergstrom; Virginia Carter; Charles L. Gallegos; William S. Hunley; Lee Karrh; Evamaria W. Koch; Jurate M. Landwehr; Kenneth A. Moore; Laura Murray; Michael D. Naylor; Nancy B. Rybicki; J. Court Stevenson; David J. Wilcox

We developed an algorithm for calculating habitat suitability for seagrasses and related submerged aquatic vegetation (SAV) at coastal sites where monitoring data are available for five water quality variables that govern light availability at the leaf surface. We developed independent estimates of the minimum light required for SAV survival both as a percentage of surface light passing though the water column to the depth of SAV growth (PLWmin) and as a percentage of light reaching reaching leaves through the epiphyte layer (PLLmin). Value were computed by applying, as inputs to this algorithm, statistically dervived values for water quality variables that correspond to thresholds for SAV presence in Chesapeake Bay. These estimates ofPLWmin andPLLmin compared well with the values established from a literature review. Calcultations account for tidal range, and total light attenuation is partitioned into water column and epiphyte contributions. Water column attenuation is further partitioned into effects of chlorophylla (chla), total suspended solids (TSS) and other substances. We used this algorithm to predict potential SAV presence throughout the Bay where calculated light available at plant leaves exceededPLLmin. Predictions closely matched results of aerial photographic monitoring surveys of SAV distribution. Correspondence between predictions and observations was particularly strong in the mesohaline and polythaline regions, which contain 75–80% of all potential SAV sites in this estuary. The method also allows for independent assessment of effects of physical and chemical factors other than light in limiting SAV growth and survival. Although this algorithm was developed with data from Chesapeake Bay, its general structure allows it to be calibrated and used as a quantitative tool for applying water quality data to define suitability of specific sites as habitats for SAV survival in diverse coastal environments worldwide.


North American Journal of Fisheries Management | 1989

Distribution and Abundance of Fishes Associated with Submersed Aquatic Plants in the Potomac River

K. Jack Killgore; Raymond P. Morgan; Nancy B. Rybicki

Abstract The distribution and abundance of fishes in submersed aquatic plants of three relative densities (no plants, intermediate plant density, high plant density) were estimated in the tidal Potomac River near Alexandria, Virginia. Fish were sampled with a boat-mounted electroshocker at night in May (when plants were emerging), August (peak plant densities), and November (plant senescence) of 1986. Mean densities of all plants ranged from 9 to 33 g/m2 (dry-weight basis) in May, and 400 to greater than 1,000 g/m2 in August and November. Hydrilla verticillata was usually the dominant aquatic plant. In May, overall mean fish abundance was highest in areas of high plant density (36 fish/5 min shocking), whereas in August and November fish abundance was highest in areas of intermediate plant densities (100 and 62 fish/5 min electroshocking, respectively). Areas without plants contained a relatively high number of filter-feeding fishes, including Atlantic menhaden Brevoortia tyrannus and blueback herring Alo...


Wetlands | 2000

SOURCES AND YIELDS OF DISSOLVED CARBON IN NORTHERN WISCONSIN STREAM CATCHMENTS WITH DIFFERING AMOUNTS OF PEATLAND

John F. Elder; Nancy B. Rybicki; Virginia Carter; Victoria Weintraub

In five tributary streams (four inflowing and one outflowing) of 1600-ha Trout Lake in northern Wisconsin, USA, we examined factors that can affect the magnitude of stream flow and transport of dissolved organic and inorganic carbon (DOC and DIC) through the streams to the lake. One catchment, the Allequash Creek basin, was investigated in more detail to describe the dynamics of carbon flow and to identify potential carbon sources. Stream flows and carbon loads showed little or no relation to surface-water catchment area. They were more closely related to ground-water watershed area because ground-water discharge, from both local and regional sources, is a major contributor to the hydrologic budgets of these catchments. An important factor in determining carbon influx to the stream is the area of peatland in the catchment. Peatland porewaters contain DOC concentrations up to 40 mg 1−1 and are a significant potential carbon source. Ground-water discharge and lateral flow through peat are the suspected mechanisms for transport of that carbon to the streams. Carbon and nitrogen isotopes suggested that the sources of DOC in Allequash Creek above Allequash Lake were wetland vegetation and peat and that the sources below Allequash Lake were filamentous algae and wild rice. Catchments with high proportions of peatland, including the Allequash Creek catchment, tended to have elevated DOC loads in outflowing stream water. Respiration and carbon mineralization in lakes within the system tend to produce low DOC and low DOC/DIC in lake outflows, especially at Trout Lake. In Allequash Lake, however, the shallow peat island and vegetation-filled west end were sources of DOC. Despite the vast carbon reservoir in the peatlands, carbon yields were very low in these catchments. Maximum yields were on the order of 2.5 g m−2 y−1 DOC and 5.5 g m−2 y−1 DIC. The small yields were attributable to low stream flows due to lack of significant overland runoff and very limited stream channel coverage of the total catchment area.


Environmental Monitoring and Assessment | 2003

Preliminary Investigation of Submerged Aquatic Vegetation Mapping using Hyperspectral Remote Sensing

David J. Williams; Nancy B. Rybicki; Alfonso V. Lombana; Timothy O'Brien; Richard B. Gomez

The use of airborne hyperspectral remote sensing imagery for automated mapping of submerged aquatic vegetation (SAV) in the tidal Potomac River was investigated for near to real-time resource assessment and monitoring. Airborne hyperspectral imagery and field spectrometer measurements were obtained in October of 2000. A spectral library database containing selected ground-based and airborne sensor spectra was developed for use in image processing. The spectral library is used to automate the processing of hyperspectral imagery for potential real-time material identification and mapping. Field based spectra were compared to the airborne imagery using the database to identify and map two species of SAV (Myriophyllum spicatum and Vallisneria americana). Overall accuracy of the vegetation maps derived from hyperspectral imagery was determined by comparison to a product that combined aerial photography and field based sampling at the end of the SAV growing season. The algorithms and databases developed in this study will be useful with the current and forthcoming space-based hyperspectral remote sensing systems.


Aquatic Botany | 1986

Effect of sediment depth and sediment type on the survival of Vallisneria americana Michx grown from tubers

Nancy B. Rybicki; Virginia Carter

Abstract Sedimentation resulting from storms may have been one of the reasons for the elimination of submersed aquatic vegetation from the tidal Potomac River in the late 1930s. Laboratory studies were conducted to investigate the effects of different depths of overlying sediment and composition of sediment on the survival of Vallisneria americana Michx (wildcelery) grown from tubers. Survival of plants grown from tubers decreased significantly with increasing sediment depth. Survival of tubers declined from 90% or more when buried in 10 cm to no survival in greater than 25 cm of sediment. Survival with depth in sand was significantly lower than in silty clay. Field investigation determined that the majority of tubers in Vallisneria beds are distributed between 10 and 20 cm in depth in silty clay and between 5 and 15 cm in depth in sand. Based on the field distribution of tubers and on the percent survival of plants growing from tubers at each depth in the laboratory experiment, we suggest that the deposition of 10 cm or more of sediment by severe storms such as occurred in the 1930s could contribute to the loss of vegetation in the tidal Potomac River.


Ecosystems | 2013

Hydrogeomorphology Influences Soil Nitrogen and Phosphorus Mineralization in Floodplain Wetlands

Gregory B. Noe; Cliff R. Hupp; Nancy B. Rybicki

Conceptual models of river–floodplain systems and biogeochemical theory predict that floodplain soil nitrogen (N) and phosphorus (P) mineralization should increase with hydrologic connectivity to the river and thus increase with distance downstream (longitudinal dimension) and in lower geomorphic units within the floodplain (lateral dimension). We measured rates of in situ soil net ammonification, nitrification, N, and P mineralization using monthly incubations of modified resin cores for a year in the forested floodplain wetlands of Difficult Run, a fifth order urban Piedmont river in Virginia, USA. Mineralization rates were then related to potentially controlling ecosystem attributes associated with hydrologic connectivity, soil characteristics, and vegetative inputs. Ammonification and P mineralization were greatest in the wet backswamps, nitrification was greatest in the dry levees, and net N mineralization was greatest in the intermediately wet toe-slopes. Nitrification also was greater in the headwater sites than downstream sites, whereas ammonification was greater in downstream sites. Annual net N mineralization increased with spatial gradients of greater ammonium loading to the soil surface associated with flooding, soil organic and nutrient content, and herbaceous nutrient inputs. Annual net P mineralization was associated negatively with soil pH and coarser soil texture, and positively with ammonium and phosphate loading to the soil surface associated with flooding. Within an intensively sampled low elevation flowpath at one site, sediment deposition during individual incubations stimulated mineralization of N and P. However, the amount of N and P mineralized in soil was substantially less than the amount deposited with sedimentation. In summary, greater inputs of nutrients and water and storage of soil nutrients along gradients of river–floodplain hydrologic connectivity increased floodplain soil nutrient mineralization rates.


Estuaries | 1994

Role of weather and water quality in population dynamics of submersed macrophytes in the tidal Potomac River

Virginia Carter; Nancy B. Rybicki; Jurate M. Landwehr; Michael Turtora

Weather and water-quality data from 1980 to 1989 were correlated with fluctuations in submersed macrophyte populations in the tidal Potomac River near Washington, D.C., to elucidate causal relationships and explain population dynamics. Both reaches were unvegetated in 1980 when mean growing-season Secchi depths were <0.60 m. Macrophyte resurgence in the upper tidal river in 1983 was associated with a growing-season Secchi depth of 0.86 m, total suspended solids (TSS) of 17.7 mg l−1, chlorophyll a concentrations of 15.2 μg l−1, significantly higher than average percent available sunshine, and significantly lower than average wind speed. From 1983 to 1989, mean seasonal Secchi depths <0.65 m were associated with decrease in plant coverage and mean seasonal Secchi depths >0.65 were associated with increases in plant coverage. Changes in mean seasonal Secchi depth were related to changes in mean seasonal TSS and chlorophyll a concentration; mean Secchi depths >0.65 generally occur when seasonal mean TSS is <19 mg l−1 and seasonal mean chlorophyll a concentration is ≤15 μg l−1. Secchi depth is highly correlated with plant growth in the upper tidal river and chlorophyll a and TSS with plant growth in the lower tidal river. Wind speed is an important influence on plant growth in both reaches.


Estuaries | 1986

Resurgence of submersed aquatic macrophytes in the tidal Potomac River, Maryland, Virginia, and the District of Columbia

Virginia Carter; Nancy B. Rybicki

A 1978–81 survey of submersed aquatic macrophytes in the tidal Potomac River showed that there were virtually no plants in the freshwater tidal river between Chain Bridge and Quantico, Virginia, decades after the disappearance of plants in the late 1930’s. Plant populations were monitored in subsequent years (1983–85) using qualitative shoreline surveys and quantitative resampling of the original 1978–81 transects. In 1983, 12 species of submersed aquatic macrophytes were found in the tidal river. Population increases were dramatic; by fall 1985, plants had colonized all shallow areas between Alexandria and Gunston Cove, Virginia.Hydrilla verticillata dominated in Dyke Marsh-Hunting Creek and Swan Creek. Most other areas contained a variable mixture ofHeteranthera dubia, Myriophyllum spicatum, Ceratophyllum demersum, Vallisneria americana, Najas guadalupensis andHydrilla verticillata. No plants were found along the main river or in tidal embayments in the reach between Gunston Cove and Quantico, Virginia. Total dry weight collected in the upper tidal river in fall 1985 was 14.5 times that of spring 1985, and four times that of fall 1984.


Estuaries | 1990

Light attenuation and submersed macrophyte distribution in the tidal Potomac River and estuary

Virginia Carter; Nancy B. Rybicki

Changing light availability may be responsible for the discontinuous distribution of submersed aquatic macrophytes in the freshwater tidal Potomac River. During the 1985–1986 growing seasons, light attenuation and chlorophylla and suspended particulate material concentrations were measured in an unvegetated reach (B) and in two adjacent vegetated reaches (A and C). Light attenuation in reach B (the lower, fresh to oligohaline tidal river) was greater than that in reach A (the recently revegetated, upper, freshwater tidal river) in both years. Reach B light attenuation was greater than that in reach C (the vegetated, oligohaline to mesohaline transition zone of the Potomac Estuary) in 1985 and similar to that in reach C in 1986. In reach B, 5% of total below-surface light penetrated only an average of 1.3 m in 1985 and 1.0m in 1986, compared with 1.9 m and 1.4 m in reach A in 1985 and 1986, respectively. Water column chlorophylla concentration controlled light availability in reaches A and B in 1985, whereas both chlorophylla and suspended particulate material concentrations were highly correlated with attenuation in both reaches in 1986. Reach C light attenuation was correlated with suspended particulate material in 1986. The relationship between attenuation coefficient and Secchi depth was KPAR=1.38/Secchi depth. The spectral distribution of light at 1 m was shifted toward the red portion of the visible spectrum compared to surface light. Blue light was virtually absent at 1.0 m in reach B during July and August 1986. Tidal range is probably an important factor in determining light availability for submersed macrophyte propagule survival at the sediment-water interface in this shallow turbid system.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Long-term reductions in anthropogenic nutrients link to improvements in Chesapeake Bay habitat

Henry A. Ruhl; Nancy B. Rybicki

Great effort continues to focus on ecosystem restoration and reduction of nutrient inputs thought to be responsible, in part, for declines in estuary habitats worldwide. The ability of environmental policy to address restoration is limited, in part, by uncertainty in the relationships between costly restoration and benefits. Here, we present results from an 18-y field investigation (1990–2007) of submerged aquatic vegetation (SAV) community dynamics and water quality in the Potomac River, a major tributary of the Chesapeake Bay. River and anthropogenic discharges lower water clarity by introducing nutrients that stimulate phytoplankton and epiphyte growth as well as suspended sediments. Efforts to restore the Chesapeake Bay are often viewed as failing. Overall nutrient reduction and SAV restoration goals have not been met. In the Potomac River, however, reduced in situ nutrients, wastewater-treatment effluent nitrogen, and total suspended solids were significantly correlated to increased SAV abundance and diversity. Species composition and relative abundance also correlated with nutrient and water-quality conditions, indicating declining fitness of exotic species relative to native species during restoration. Our results suggest that environmental policies that reduce anthropogenic nutrient inputs do result in improved habitat quality, with increased diversity and native species abundances. The results also help elucidate why SAV cover has improved only in some areas of the Chesapeake Bay.

Collaboration


Dive into the Nancy B. Rybicki's collaboration.

Top Co-Authors

Avatar

Virginia Carter

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Henry A. Ruhl

National Oceanography Centre

View shared research outputs
Top Co-Authors

Avatar

Jurate M. Landwehr

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Cliff R. Hupp

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Edward R. Schenk

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Kenneth A. Moore

Virginia Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Gregory B. Noe

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

John W. Barko

Engineer Research and Development Center

View shared research outputs
Top Co-Authors

Avatar

Robert J. Orth

Virginia Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Michael Turtora

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge